Read other articles:

Halaman ini berisi artikel tentang bangun ruang berdimensi tiga. Untuk kubus dalam sebarang dimensi, lihat Hiperkubus. KubusKubus berbentuk heksahedron.Jenisbangun ruang PlatonikMuka6Rusuk12titik sudut8Konfigurasi titik sudutV 3.3.3.3Simbol Wythoff3Simbol Schläfli{4,3}Diagram CoxeterGrup simetriOh, B3, [4,3], (* 432)Sudut dihedral (derajat)90°Sifat-sifatberaturan, cembung zonohedronJaring Kubus dalam 3D Dalam geometri, kubus adalah bangun ruang tiga dimensi yang dibatasi oleh enam bidang si...

 

Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Ali Ibrahim – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Ali Ibrahim Wali Kota Tidore Kepulauan ke-2Pe...

 

Pour les articles homonymes, voir Académie des sciences. Académie des sciencesColbert présente à Louis XIV les membres de l'Académie royale des sciences en 1667.HistoireFondation 22 décembre 1666CadreType Académie des sciencesForme juridique Établissement public national à caractère administratifDomaine d'activité biologie, chimie, informatique, mathématiques, mécanique, médecine, physique, sciences de l'univers.Siège Paris (75006)Pays  FranceCoordonnées 48° 51′&...

Indian cricketer Umesh YadavPersonal informationFull nameUmeshkumar Tilak YadavBorn (1987-05-25) 25 May 1987 (age 36)Nagpur, Maharashtra, India[1]NicknameVidarbha Express, Paplu, Strongman[2]Height5 ft 11 in (180 cm)[3]BattingRight-handedBowlingRight-arm fastRoleBowlerInternational information National sideIndia (2010–present)Test debut (cap 272)6 November 2011 v West IndiesLast Test7 June 2023 v AustraliaODI debu...

 

Internet hoax Tree octopus redirects here. Not to be confused with Octopus tree. Doctored image of the Pacific Northwest tree octopus as it appears on the website The Pacific Northwest tree octopus is an Internet hoax created in 1998 by a humor writer under the pseudonym Lyle Zapato.[1][2] Since its creation, the Pacific Northwest tree octopus website has been commonly referenced in Internet literacy classes in schools and has been used in multiple studies demonstrating child...

 

American actress (1922–2011) For the American music educator and songwriter, see Jane Douglass White. For the American painter, see Jane White Cooke. Jane WhitePublicity Photo of Jane WhiteBorn(1922-10-30)October 30, 1922New York City, U.S.DiedJuly 24, 2011(2011-07-24) (aged 88)New York City, U.S.Occupation(s)Actress and singerSpouse Alfredo Viazzi ​ ​(m. 1962; died 1987)​ParentWalter Francis White (father) Jane White (October 30, 1922 �...

Highest-ranking member of the United States Coast Guard This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Commandant of the Coast Guard – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and when to remove this template message) Commandant of the Coast GuardSeal of the Coast GuardFlag of t...

 

American TV series or program The Ambiguously Gay DuoThe Ambiguously Gay Duo title cardGenreAnimationCreated byRobert SmigelJ. J. SedelmaierVoices ofStephen ColbertSteve CarellRobert SmigelNarrated byBill ChottCountry of originUnited StatesOriginal languageEnglishNo. of episodes12ProductionProducersRobert SmigelJ.J. SedelmaierTanya RynoSamantha ScharffRunning time3 minutesProduction companiesJ.J. Sedelmaier Productions, Inc.Original releaseNetworkABC (1996)NBC (1996–2011) The Ambiguously G...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

State park in California, United States MacKerricher State ParkShow map of CaliforniaShow map of the United StatesLocationMendocino County, CaliforniaNearest cityFort Bragg, CaliforniaCoordinates39°29′36″N 123°47′37″W / 39.49333°N 123.79361°W / 39.49333; -123.79361Area2,299 acres (930 ha)Established1952Governing bodyCalifornia Department of Parks and Recreation Harbor seal nursing her pup on MacKerricher Beach MacKerricher State Park is a sta...

 

Species of edible plant For the software, see Celery (software). This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (May 2022) CeleryCelery for saleGenusApiumSpeciesApium graveolensCultivar groupDulce Group Celery (Apium graveolens Dulce Group or Apium graveolens var. dulce)[1] is a cultivated plant belonging to the species Apium graveolens in...

 

Achille Funi tra Ernesto Treccani (a sinistra) e Rodolfo Margaria Achille Virgilio Socrate Funi (Ferrara, 26 febbraio 1890 – Appiano Gentile, 26 luglio 1972) è stato un pittore italiano, fra gli iniziatori del movimento artistico del Novecento nel 1922 a Milano.[1] È stato anche scultore, architetto, illustratore, scenografo e grafico. Negli anni trenta ha teorizzato e praticato il ritorno alla pittura murale. Indice 1 Biografia 2 Opere 3 Achille Funi nei musei 4 Note 5 Bibliograf...

There is a prime between any two square numbers Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between n 2 {\displaystyle n^{2}} and ( n + 1 ) 2 {\displaystyle (n+1)^{2}} for every positive integer n {\displaystyle n} . The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers. Unsolved problem in mathematics: Does there always exist at least one prime between n 2 {\displa...

 

Not to be confused with Mosaic evolution. Elephants forage In a forest-savanna mosaic in Lopé National Park. Forest–savanna mosaic is a transitory ecotone between the tropical moist broadleaf forests of Equatorial Africa and the drier savannas and open woodlands to the north and south of the forest belt. The forest–savanna mosaic consists of drier forests, often gallery forest, interspersed with savannas and open grasslands. Flora This band of marginal savannas bordering the dense dry fo...

 

American close-up magician Michael AmmarBorn (1956-06-25) June 25, 1956 (age 68)Logan, West VirginiaOccupationMagicianKnown forMagic and Magic TrainingWebsitehttp://www.ammarmagic.com/, http://www.michaelammar.com, http://worldsgreatestmagic.com Michael Ammar (born June 25, 1956) is an American close-up magician.[1] [2] Background Ammar was born in Logan, West Virginia. His father's background was Syrian, Ammar earned a degree from West Virginia University in busines...

Regional councilEshkol אשכול‎إشكولRegional council (from 1951)DistrictSouthernGovernment • Head of MunicipalityGadi YarkoniArea • Total735,520 dunams (735.52 km2 or 283.99 sq mi)Population (2014) • Total12,800 • Density17/km2 (45/sq mi)WebsiteOfficial website Eshkol Regional Council (Hebrew: מועצה אזורית אשכול, Mo'atza Ezorit Eshkol) is a regional council in the north-wester...

 

Australian rules football player Australian rules footballer Sam Walsh Walsh as AFL Rising Star in the 2019 AFL Grand Final ParadePersonal informationFull name Samuel Peter WalshNickname(s) Worpa, Walshy[citation needed]Date of birth (2000-07-02) 2 July 2000 (age 24)Place of birth VictoriaOriginal team(s) Geelong Falcons (TAC Cup)[1]/St Joseph’s(GFNL)/Nightcliff(NTFL)Draft No. 1, 2018 national draftDebut 21 March 2019, Carlton vs. Richmond, at MCGHeight 184...

 

  此條目介紹的是漢族民系。关于「廣府」一詞的本意,请见「广州市」。关于杨氏太极拳的发源地,请见「广府城」。关于籍貫為廣東的人,请见「广东人」。 廣府民系Gwong2-fu2-man4-hai6 廣府人Gwong2-fu2-jan4Cantonese六祖惠能陳獻章梁儲袁崇焕邓世昌康有為容闳冯如梁啟超邹伯奇葉問梁思成黄柳霜萧友梅何香凝李兆基陈垣唐绍仪吴大猷黃以靜駱家輝劉德華梅艷芳易建聯戴�...

Swiss writer (1884-1963) Albert SteffenBorn(1884-12-10)10 December 1884Wynau, SwitzerlandDied13 July 1963(1963-07-13) (aged 78)Dornach, SwitzerlandNationalitySwissOccupation(s)Poet, artist Albert Steffen (10 December 1884, Wynau, Switzerland – 13 July 1963, Dornach, Switzerland) was a poet, painter, dramatist, essayist, and novelist. He joined the Theosophical Society in Germany in 1910, and the Anthroposophical Society in 1912 and became its president after the dea...

 

دالة محدبةمعلومات عامةصنف فرعي من quasiconvex function (en) دالة مستمرة[1] جزء من concave and convex functions (en) تعريف الصيغة ∀ c , d ∈ ( a , b ) , t ∈ [ 0 , 1 ] : f ( ( 1 − t ) c + t d ) ≤ ( 1 − t ) f ( c ) + t f ( d ) {\displaystyle \forall c,d\in (a,b),t\in [0,1]:f((1-t)c+td)\leq (1-t)f(c)+tf(d)} [2] الرموز في الصيغة f {\displaystyle f} ممثلة بـ متبا�...