SRKとSCR/SP11の相互作用は、SRK細胞内キナーゼドメインの自己リン酸化を行い[28][29]、あるシグナルを柱頭の乳頭細胞に伝導する。自家不和合性反応に必要なもう一つのタンパク質は、細胞内部側から細胞膜へシグナルを伝えるMLPK(M-locus protein kinase, ある種のセリン/トレオニンキナーゼ)である[30]。受精を抑制する最終的な細胞内・分子的事象の下流の詳細は、充分には判明していない。
^ abMcClure, B. A., V. Haring, , P. R. Ebert, M. A. Anderson, R. J. Simpson, F. Sakiyama, and A. E. Clarke (1989). "Style selfincompatibility gene products of Nicotiana alata are ribonucleases." Nature342: 955-957.
^ abIgic, B., and J. R. Kohn (2001). "Evolutionary relationships among self-incompatibility RNases". Proc. Natl. Acad. Sci. USA98(23): 13167-71.
^Qiao, H., H. Wang, L. Zhao, J. Zhou, J. Huang, Y. Zhang, and Y. Xue (2004) "The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum." Plant Cell16(3): 582-95.
^Qiao, H., F. Wang, L. Zhao, J. Zhou, Z. Lai, Y. Zhang, T. P. Robbins, and Y. Xue (2004b). "The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility." Plant Cell16(9): 2307-22.
^Ushijima, K., H. Yamane, A. Watari, E. Kakehi, K. Ikeda, N. R. Hauck, A. F. Iezzoni, and R. Tao (2004). "The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume." Plant J.39(4): 573-86.
^ abSijacic, P., X. Wang, A. L. Skirpan, Y. Wang, P. E. Dowd, A. G. McCubbin, S. Huang, and T. Kao (2004). "Identification of the pollen determinant of S-RNase-mediated self-incompatibility." Nature429: 302-305.
^ abcdefFranklin-Tong, V. E., and F. C. H. Franklin (2003). "The different mechanisms of gametophytic self-incompatibility." Philos. Trans. R. Soc. Lond. B. Biol. Sci.358(1434): 1025-1032.
^Franklin-Tong, V. E., J. P. Ride, N. D. Read, A. J. Trewawas, and F. C. H. Franklin (1993). "The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium." Plant J.4: 163-177.
^Franklin-Tong, V. E., G. Hackett, and P. K. Hepler (1997). "Ratioimaging of Ca21 in the self-incompatibility response in pollen tubes of Papaver rhoeas." Plant J.12: 1375-1386.
^Franklin-Tong, V. E., T. L. Holdaway-Clarke, K. R. Straatman, J. G. Kunkel, and P. K. Hepler (2002). "Involvement of extracellular calcium influx in the self-incompatibility response of Papaver rhoeas." Plant J.29: 333-345.
^Rudd, J. J., F. C. H. Franklin, J. M. Lord, and V. E. Franklin-Tong (1996). "Increased phosphorylation of a 26-kD pollen protein is induced by the self-incompatibility response in Papaver rhoeas." Plant Cell8: 713-724.
^Geitmann, A., B. N. Snowman, , A. M. C. Emons, and V. E. Franklin-Tong (2000). "Alterations to the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas." Plant Cell12: 1239-1252.
^Snowman, B. N., D. R. Kovar, G. Shevchenko, V. E. Franklin-Tong, and C. J. Staiger (2002). "Signal-mediated depolymerization of actin in pollen during the self-incompatibility response." Plant Cell14: 2613-2626.
^Jordan, N. D., F. C. H. Franklin, and V. E. Franklin-Tong (2000). "Evidence for DNA fragmentation triggered in the selfincompatibility response in pollen of Papaver rhoeas." Plant J.23: 471-479.
^Thomas, S. G., and V. E. Franklin-Tong (2004). "Self-incompatibility triggers programmed cell death in Papaver pollen." Nature429: 305-309.
^Goodwillie, C. (1997). "The genetic control of self-incompatibility in Linanthus parviflorus (Polemoniaceae)." Heredity79: 424-432.
^ abHiscock, S. J., and D. A. Tabah (2003). "The different mechanisms of sporophytic self-incompatibility." Philos. Trans. R. Soc. Lond. B. Biol. Sci.358(1434): 1037-1045.
^Ockendon, D. J. (1974). "Distribution of self-incompatibility alleles and breeding structure of open-pollinated cultivars of Brussels sprouts." Heredity32: 159-171.
^Schopfer, C. R., M. E. Nasrallah, and J. B. Nasrallah, (1999). "The male determinant of self-incompatibility in Brassica." Science266: 1697-1700.
^Takayama, S., H. Shiba, M. Iwano, H. Shimosato, F.-S. Che, N. Kai, M. Watanabe, G. Suzuki, K. Hinata, and A. Isogai (2000). "The pollen determinant of self-incompatibility in Brassica campestris." Proc. Natl Acad. Sci USA97: 1920-1925.
^Stein, J. C., B. Howlett, D. C. Boyes, M. E. Nasrallah, and J. B. Nasrallah (1991). "Molecular cloning of a putative receptor kinase gene encoded by the self-incompatibility locus of Brassica oleracea." Proc. Natl Acad. Sci. USA88: 8816-8820.
^Nasrallah, J. B., and M. E. Nasrallah (1993). "Pollen–stigma signalling in the sporophytic self-incompatibility response." Pl. Cell5: 1325-1335.
^Takasaki, T., K. Hatakeyama, G. Suzuki, M. Watanabe, A. Isogai, and K. Hinata (2000). "The S receptor kinase determines self-incompatibility in Brassica stigma." Nature403: 913-916.
^Schopfer, C. R., and J. B. Nasrallah (2000). "Self-incompatibility. Prospects for a novel putative peptide-signaling molecule." Pl. Physiol.124: 935-939.
^Takayama, S., H. Shimosato, H. Shiba, M. Funato, F.-E. Che, M. Watanabe, M. Iwano, and A. Isogai (2001). "Direct ligand–receptor complex interaction controls Brassica self-incompatibility." Nature413: 534-538.
^Murase, K., H. Shiba, M. Iwano, F. S. Che, M. Watanabe, A. Isogai, and S. Takayama (2004). "A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling." Science303(5663): 1516-1519.
^ abcdGanders, F. R. (1979). "The biology of heterostyly." New Zealand Journal of Botany17: 607-635.
^Ornduff, R., and S. G. Weller (1975). "Pattern diversity of incompatibility groups in Jepsonia heterandra (Saxifragaceae)." Evolution29: 373-5.
^Ganders, F. R. (1976). "Pollen flow in distylous populations of Amsinckia (Boraginaceae)." Canadian Journal of Botany54: 2530-5.
^Spieth, P. T. (1971). "A necessary condition for equilibrium in systems exhibiting self-incompatible mating." Theoretical Population Biology2: 404-18.
^Glaettli, M. (2004). Mechanisms involved in the maintenance of inbreeding depression in gynodioecious Silene vulgaris (Caryophyllaceae): an experimental investigation. PhD dissertation, University of Lausanne.
^ abBateman, A. J. (1956). "Cryptic self-incompatibility in the wallflower: Cheiranthus cheiri L." Heredity10: 257-261.
^Travers, S. E., and S. J. Mazer (2000). "The absence of cryptic self-incompatibility in Clarkia unguiculata (Onagraceae)." American Journal of Botany87(2): 191-196.
^ abSeavey, S. F., and K. S. Bawa (1986). "Late-acting self-incompatibility in angiosperms." Botanical Review52: 195-218.
^Sage, T. L., R. I. Bertin, and E. G. Williams (1994). "Ovarian and other late-acting self-incompatibility systems." In E. G. Williams, R. B. Knox, and A. E. Clarke [eds.], Genetic control of self-incompatibility and reproductive development in flowering plants, 116-140. Kluwer Academic, Amsterdam.
^Sage, T. L., F. Strumas, W. W. Cole, and S. C. H. Barrett (1999). "Differential ovule development following self- and cross-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae)." American Journal of Botany86(6): 855-870.
^Sage, T. L., and E. G. Williams (1991). "Self-incompatibility in Asclepias." Plant Cell Incomp. Newsl.23: 55-57.
^Sparrow, F. K., and N. L. Pearson (1948). "Pollen compatibility in Asclepias syriaca." J. Agric. Res.77: 187-199.
^ abLipow, S. R., and R. Wyatt (2000). "Single Gene Control of Postzygotic Self-Incompatibility in Poke Milkweed, Asclepias exaltata L." Genetics154: 893-907.
^Bittencourt JR, N. S., P. E. Gibbs, and J. Semir (2003). "Histological study of post-pollination events in Spathodea campanulata Beauv. (Bignoniaceae), a species with late-acting self-incompatibility." Annals of Botany91: 827-834.
^Klekowski, E. J. (1988). Mutation, Developmental Selection, and Plant Evolution. Columbia University Press, New York.
^Waser N. M., and M. V. Price (1991). "Reproductive costs of self-pollination in Ipomopsis aggregata (Polemoniaceae): are ovules usurped?" American Journal of Botany78: 1036-1043.
^Nic Lughadha E. (1998). "Preferential outcrossing in Gomidesia (Myrtaceae) is maintained by a post-zygotic mechanism." In: S. J. Owens and P. J. Rudall [eds.], Reproductive biology in systematics, conservation and economic botany. London: Royal Botanic Gardens, Kew, 363-379.