Read other articles:

Bukan Salah Bunda MengandungGenre Drama Roman PembuatMD EntertainmentPemeran Darius Sinathrya Verlita Evelyn Jennifer Dunn Ira Wibowo William Alvin Pierre Gruno Penggubah lagu temaNetta KDLagu pembukaBukan Salah Bunda Mengandung — Netta KDLagu penutupBukan Salah Bunda Mengandung — Netta KDPenata musikIwang ModulusNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode11 (daftar episode)ProduksiProduser Dhamoo Punjabi Manoj Punjabi Pengaturan kameraMulti-kameraDuras...

 

Glenea astathiformis Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lamiinae Tribus: Saperdini Genus: Glenea Spesies: Glenea astathiformis Glenea astathiformis adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Glenea, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat meny...

 

Artikel ini bukan mengenai America, Belanda. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Amerika, Belanda – berita · surat kabar · buku · cendekiawan · JSTOR Amerika adalah sebuah hamlet (daerah setingkat dusun atau perdukuhan) di Belanda. Dusun i...

National Hockey League cross-town rivalry between the Anaheim Ducks and Los Angeles Kings Freeway Face-Off Anaheim Ducks Los Angeles Kings First meetingDecember 2, 1993Latest meetingFebruary 24, 2024Next meetingApril 9, 2024StatisticsMeetings total168All-time series80–60–11–17 (LAK)Regular season series76–57–11–17 (LAK)Postseason results4–3 (LAK)Largest victoryLAK 7–1 ANADecember 27, 1995Longest win streakLAK W8Current win streakLAK W8Postseason history 2014 second round: King...

 

Academy Award winners for 2011 (from left to right):- Christian Bale, Best Supporting Actor—The Fighter- Natalie Portman, Best Actress—Black Swan- Melissa Leo, Best Supporting Actress—The Fighter- Colin Firth, Best Actor—The King's Speechwith trophies known as Oscars This list of actors with Academy Award nominations includes all male and female actors with Academy Award nominations for lead and supporting roles in motion pictures, and the total nominations and wins for each actor. N...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Questa voce sull'argomento calciatori namibiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Maximilian Mbaeva Nazionalità  Namibia Altezza 180 cm Peso 76 kg Calcio Ruolo Portiere Squadra  Utd Africa Tigers Carriera Squadre di club1 2007-2014 African Stars? (-?)2014-2022 Golden Arrows86 (-?)2023 Uthongathi1 (-?)2023- Utd Africa Tigers? (-?) Nazionale 2008- Namibia21 (-...

 

2015 action-adventure game 2015 video gameJust Cause 3Developer(s)Avalanche StudiosPublisher(s)Square Enix EuropeDirector(s)Roland LesterlinProducer(s)Adam DavidsonBill PodurgielDesigner(s)Francesco AntoliniProgrammer(s)Andrew YountArtist(s)Zach SchläppiWriter(s)Nathaniel BryanPatrick DownsKatie ElwoodBenjamin JaekleJoe LaurinoRoland LesterlinGreg OrlandoOmar ShakirMike VarleyComposer(s)Henry JackmanSeriesJust CausePlatform(s)PlayStation 4WindowsXbox OneRelease1 December 2015Genre(s)Action-a...

 

Al-Jāmi' al-Kāmil Fī al-Hadīth al-Sahīh al-Shāmil PengarangImam Ziya-ur-Rahman AzmiJudul asliالجامع الكامل في الحديث الصحيح الشامل NegaraKSA dan PAKBahasaArabGenreKumpulan hadisDiterbitkan2019 (Dar Ibnu Bashir) (Arab) Edisi ke-2/terakhir Bagian dari seriHadis Ulum hadis Mustalahul hadis Kategori 'Ilm ar-rijal Mushannaf Israiliyyat Kumpulan Sunni1Kutubussittah(Enam Kitab) Shahih al-Bukhari صحيح البخاري Shahih Muslim صحيح مسلم Jami' ...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

الحيض غير المنتظم هو اضطراب الدورة الشهرية الذي تشمل مظاهره طول الدورة غير المنتظمة وكذلك النزيف الرحمي (النزيف المهبلي بين الفترات المتوقعة). الدورات غير المنتظمة الدورات غير المنتظمة أو الفترات غير المنتظمة هي اختلاف غير طبيعي في طول دورات الحيض. تواجه المرأة عادة تغيرا...

 

For other uses, see Stepney (disambiguation). Human settlement in EnglandStepneyClockwise from top left: St. Dunstan's Church; Stepney Green tube station; Genesis cinema; route 135 at Arbour Square; Stepney Green; the Half Moon pub.StepneyLocation within Greater LondonPopulation16,238 (2011 census. St Dunstan's and Stepney Green Ward)[1]OS grid referenceTQ355814• Charing Cross3.6 mi (5.8 km) WSWLondon boroughTower HamletsCeremonial county...

 

26th Attorney General of Arizona Mark BrnovichBrnovich in 201426th Attorney General of ArizonaIn officeJanuary 5, 2015 – January 2, 2023GovernorDoug DuceyPreceded byTom HorneSucceeded byKris Mayes Personal detailsBorn1966 (age 57–58)Detroit, Michigan, U.S.Political partyRepublicanSpouseSusan SkibbaChildren2EducationArizona State University, Tempe (BA)University of San Diego (JD)Military serviceAllegiance United StatesBranch/service United States ArmyYears ...

Freighter in the Great Lakes service that sank in Lake Superior The Superior City, sometime prior to 1912. History NameSuperior City OwnerAmerican Steamship Company 1898 – 1901; Pittsburg Steamship Company 1901 – 1920 Port of registryCleveland, Ohio  United States BuilderCleveland Shipbuilding Company, Lorain, Ohio Completed1898 IdentificationUnited States Registry # 116820 FateSank in Whitefish Bay 20 August 1920 after colliding with Willis L. King NotesFirst vessel launched from th...

 

Cet article est une ébauche concernant une localité kosovare. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Jasiq Jasić, Јасић Administration Pays Kosovo District Gjakovë/Đakovica (Kosovo)Pejë/Peć (Serbie) Commune Junik/Junik (Kosovo)Deçan/Dečani (Serbie) Démographie Population 0 hab. (2011) Géographie Coordonnées 42° 29′ 33″ nord, 20° 15′ 06″ est A...

 

1933 film Rusty Rides AloneFilm posterDirected byD. Ross LedermanWritten byWalter J. CoburnRobert QuigleyStarringTim McCoyDistributed byColumbia PicturesRelease date May 26, 1933 (1933-05-26) Running time58 minutesCountryUnited StatesLanguageEnglish Rusty Rides Alone is a 1933 American Pre-Code Western film directed by D. Ross Lederman and starring Tim McCoy.[1] The film was remade in 1939 as Riders of the Sage. Plot This article needs a plot summary. Please add one in ...

Vous lisez un « bon article » labellisé en 2007. Cette page contient des caractères d'alphasyllabaires indiens. En cas de problème, consultez Aide:Unicode. Pour les articles homonymes, voir Nagari. Devanagari Manuscrit du Rig-Veda en devanagari (début du XIXe siècle). Caractéristiques Type Alphasyllabaire Langue(s) Plusieurs langues du nord de l'Inde dont le sanskrit, le hindi, le marathi, le sindhi, le bihari, le bhili, le konkani, le bhojpuri, le népalais, le nepalb...

 

Geometric theorem For the book about the paradox, see The Banach–Tarski Paradox (book). Can a ball be decomposed into a finite number of point sets and reassembled into two balls identical to the original? The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield...