松尾弌之
|
Read other articles:
Peta wilayah Ventron. Ventron merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvelle Anglemont Anould Aouze Arches Archettes Aroffe Arrentès-de-Corcieux Attignéville Attigny Aulnois Aumontzey Autigny-la-Tour Autreville Autrey Auzainvilliers Avillers Avrainville Avranville Aydoilles Badménil-a...
Bookstore chain selling new and used books Powell's BooksPowell's City of Books in 2008, viewed from the corner of NW 10th & Burnside StreetIndustrySpecialty retailFounded1971 (53 years ago) (1971)FounderWalter PowellHeadquartersPortland, Oregon, United StatesNumber of locationsFour (three full-service locations and one specialty bookstore)Area servedPortland metropolitan areaCondon, OregonKey peopleEmily PowellChase PowellProductsNew, used, and rare books, magazines, cards,...
American basketball player Arnette HallmanHallman blocks a shot with the Joliet JC Wolves in 1977Personal informationBorn (1958-10-19) October 19, 1958 (age 65)Chicago, Illinois, U.S.Listed height6 ft 7 in (2.01 m)Listed weight205 lb (93 kg)Career informationHigh schoolCarl Schurz (Chicago, Illinois)College Joliet JC (1976–1978) Purdue (1978–1980) NBA draft1980: 2nd round, 46th overall pickSelected by the Boston CelticsPlaying career1980–1990PositionSmall f...
British TV series or programme ShadowsCountry of originUnited KingdomNo. of series3No. of episodes20ProductionProducersPamela Lonsdale (series 1 & 3) Ruth Boswell (series 2)Running time30 minutesProduction companyThames TelevisionOriginal releaseNetworkITVRelease3 September 1975 (1975-09-03) –1 November 1978 (1978-11-01) Shadows is a British supernatural television anthology series produced by Thames Television for ITV between 1975 and 1978. Extending over three series, ...
Questa voce sull'argomento calciatori croati è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Mateo Roskam Nazionalità Croazia Altezza 186 cm Peso 75 kg Calcio Ruolo Attaccante Termine carriera 2020 Carriera Giovanili 2003-2005 Zmaj Makarska Squadre di club1 2005-2007 NK Zagabria12 (2)2007-2010 Leonesa46 (10)2010-2013 Široki Brijeg45 (18)2013-2014 Slaven Belupo21 (4)2014...
恩维尔·霍查Enver Hoxha霍查官方肖像照(摄于1980年代初)阿尔巴尼亚共产党中央委员会总书记任期1943年3月—1948年11月[1]前任無(首任)继任本人(劳动党中央委员会总书记)阿尔巴尼亚劳动党中央委员会总书记任期1948年11月—1954年7月[1]前任本人(共产党中央委员会总书记)继任本人(劳动党中央委员会第一书记)阿尔巴尼亚劳动党中央委员会第一书记任期1954...
土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...
Olympiastadion Berlin – größtes Stadion bei internationalen Spielen Die Liste der größten Fußballstadien in Deutschland umfasst alle Stadien in Deutschland, in denen Fußball gespielt wird oder wurde, ab 15.000 Zuschauerplätzen. Diese können sich aus Sitz- und Stehplätzen zusammensetzen. Für den Deutschen Fußball-Bund (DFB) ist dies neben anderen Kriterien die Untergrenze für die Spielberechtigung in der Fußball-Bundesliga. Es werden jeweils das Jahr der Eröffnung, das Vorhande...
لمعانٍ أخرى، طالع حب (توضيح). حبمعلومات عامةصنف فرعي من experience (en) عاطفةشعور جزء من نظرية العاطفةمصطلحات علم النفس ممثلة بـ intimacy (en) النقيض كره تعديل - تعديل مصدري - تعديل ويكي بيانات سلسلة مقالات حولالحبRed line heart icon الأسس مرادفات الحب إحسان ترابط بشري أسس الحب البيولوجية...
First women's football U-17 World Cup in FIFA history This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: 2008 FIFA U-17 Women's World Cup – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this message) 2008 FIFA U-17 Women's World Cup2008 FIFA I Raro I Te 17 Kapu Wahine O Te AoFIFA U-17 WWC official logoTournament det...
Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan ...
Order of flowering plants in the dicots FabalesTemporal range: Albian-Recent[1] PreꞒ Ꞓ O S D C P T J K Pg N Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Clade: Fabids Order: FabalesBromhead[2] Families Fabaceae (legumes) Quillajaceae Polygalaceae (milkwort family) Surianaceae Synonyms Caesalpiniales Martius Cassiales Link Mimosales Link Polygalales Berchtold & J. Presl Quillajales Doweld Surianales Dow...
Risa HontiverosHontiveros tahun 2016 Senat FilipinaPetahanaMulai menjabat 30 Juni 2016Anggota Dewan Perwakilan Rakyat dari AkbayanMasa jabatan30 Juni 2004 – 30 Juni 2010 Informasi pribadiLahirAna Theresia Hontiveros24 Februari 1966 (umur 58)[butuh rujukan]Manila, FilipinaKebangsaanFilipinoPartai politikAkbayan Citizens' Action Party (2004–sekarang)Afiliasi politiklainnyaPartai Liberal (2010)Tim PNoy (2013)Koalisyon ng Daang Matuwid (2016)Suami/istriFrancisco Bara...
Pour les articles homonymes, voir Lubin. Cet article est une ébauche concernant une localité polonaise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Lubin Lüben Héraldique Drapeau Hôtel de ville. Administration Pays Pologne Région Basse-Silésie District Powiat de Lubin Maire Robert Raczyński Code postal 59-300 Indicatif téléphonique international +(48) Indicatif téléphonique local 76 Immatri...
Adamantanoformula di struttura e modello molecolare della conformazione Nome IUPACTriciclo[3.3.1.13,7]decano Caratteristiche generaliFormula bruta o molecolareC10H16 Massa molecolare (u)136.23 Aspettopolvere bianca cristallina Numero CAS281-23-2 Numero EINECS206-001-4 PubChem9238 SMILESC1C2CC3CC1CC(C2)C3 Proprietà chimico-fisicheDensità (g/cm3, in c.s.)1.07 g/cm³ (a 20 °C) Solubilità in acquapoco solubile Temperatura di fusione270 °C Indicazioni di sicurezzaSimboli di rischio chimi...
えり ちえみ江利 チエミ 1954年10月3日(日曜日)の公演 当時17歳本名 久保 智恵美生年月日 (1937-01-11) 1937年1月11日没年月日 (1982-02-13) 1982年2月13日(45歳没)出生地 東京府東京市下谷区(現・東京都台東区下谷)[1]死没地 東京都港区国籍 日本血液型 A型職業 歌手・女優・タレントジャンル ジャズ・歌謡曲・民謡など活動期間 1952年 - 1982年配偶者 高倉健(1959年 - 1971...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Britta Persson – news...
В Википедии есть статьи о других людях с такой фамилией, см. Ергомышев. Константин Львович Ергомышев Мичман К. Л. Ергомышев Дата рождения 20 апреля 1856(1856-04-20) Дата смерти 1916(1916) Род деятельности офицер Принадлежность Россия Род войск ВМФ Годы службы 1875-1914 Звание Генерал...
Bocciaat the XV Paralympic GamesVenueRiocentro, Barra ClusterDates10–16 September 2016Competitors104←20122020→ Boccia at the2016 Summer ParalympicsIndividualBC1BC2BC3BC4TeamBC1–2PairsBC3BC4vte Boccia at the 2016 Summer Paralympics[1] was held in Riocentro, in the Barra district of Rio de Janeiro in September 2016, with a maximum of 104 athletes (24 women, 80 gender unspecified) competing in seven events. The programme consisted of four individual events, two pairs events, and...
Subgroup of an abelian group consisting of all elements of finite order In the theory of abelian groups, the torsion subgroup AT of an abelian group A is the subgroup of A consisting of all elements that have finite order (the torsion elements of A[1]). An abelian group A is called a torsion group (or periodic group) if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order. The proof that AT is closed under the gr...