帰ってきた家売るオンナ
|
Read other articles:
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Aji Pangeran Anum Panji Mendapa ing Martapura – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan be...
ساريا أمينة هانم إلهاميشعر الفندق مفتاح الحياةقصر الاميرة أمينة إلهامي علي اليسار فندق توفيق بالاسالتسميةأسماء سابقة قصر الخديوي توفيقأسماء بديلة فندق توفيق بلاس، سراي أمينة هانمنسبة الاسم إلى أمينة إلهاميمعلومات عامةالحالة مدرسةنوع المبنى فندق مدرسةالمكان حلوان �...
RottenführerTambalan gorget SS Lambang bahu dan lengan Waffen-SSNegara JermanCabang angkatan Pemuda Hitler Korps Motor Sosialis Nasional National Socialist Flyers Corps Schutzstaffel SturmabteilungSingkatanRottenfPembentukan1932Ditiadakan1945Pangkat atasanScharführer (SA)Unterscharführer (SS)Pangkat bawahanSturmmannPangkat setaraObergefreiter Seorang SS-Rottenführer bertugas di kamp konsentrasi Mauthausen-Gusen. Rottenführer (Jerman: [ˈʁɔtn̩fyːʁɐ], terj. har. 'p...
追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...
American animated superhero television series For the comic book series, see Young Justice. For the video game based on this show, see Young Justice: Legacy. Young JusticeAlso known asYoung Justice: Invasion (season 2)Young Justice: Outsiders (season 3)Young Justice: Phantoms (season 4)GenreSuperheroActionAdventureScience fantasyTeen dramaBased onYoung Justiceby Todd DezagoTodd NauckLary StuckerCharactersby DC ComicsDeveloped byBrandon ViettiGreg WeismanVoices ofJesse McCartneyKhary PaytonJas...
Pour les articles homonymes, voir Y2K. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. L'introduction de cet article est soit absente, soit non conforme aux conventions de Wikipédia (mars 2023). Ces motifs sont peut-être précisés sur la page de discussion. — Découvrez comment faire pour en améliorer la rédaction. Bug de l'an 2000 : la pendule indique janvier 1900 au lieu de janvier 2000. Le passage informatique à l'an 2000, connu sous le terme ...
City in Nabatieh Governorate, Lebanon This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nabatieh – news · newspapers · books · scholar · JSTOR (September 2010) (Learn how and when to remove this message) City in Nabatieh GovernorateNabatieh النبطيةCityNabatieh, 2006NabatiehLocation within LebanonCoordi...
† Стеллерова корова Муляж стеллеровой коровы в Лондонском музее естествознания Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстно�...
Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...
Sapfo atau Lesbos, dilukis tahun 1904 oleh John William Godward, memberi istilah lesbian yang berkonotasi hasrat erotis antara sesama wanita.[1] Sastra lesbian adalah subgenre dari sastra yang membahas tema lesbian, termasuk puisi, drama, karya-karya fiksi yang membahas karakter lesbian, dan karya-karya non-fiksi tentang topik lesbian. Fiksi yang termasuk dalam kategori ini bisa dari genre apa saja, misalnya fiksi sejarah, fiksi ilmiah, fantasi, horor, atau roman. Beberapa penulis pri...
Department of Justice and Constitutional Development List 10 other official names: Departement van Justisie en Staatkundige Ontwikkeling (Afrikaans) umNyango wezoBulungiswa nokuThuthukiswa komThethosisekelo (Southern Ndebele) iSebe lezoBulungisa noMgaqosiseko (Xhosa) uMnyango Wezobulungiswa Nokuthuthukiswa Komthethosisekelo (Zulu) Litiko Letebulungiswa Netekutfutfukiswa Kwemtsetfosisekelo (Swazi) Kgoro ya Toka le Tlhabollo ya Molaotheo (Northern Sotho) Lefapha l...
Lophostemon Lophostemon suaveolens Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Rosid Ordo: Myrtales Famili: Myrtaceae Subfamili: Amygdaloideae Tribus: Spiraeeae Genus: LophostemonSchott Spesies[1] Lophostemon confertus (R.Br.) Peter G.Wilson & J.T.Waterh. Lophostemon grandiflorus (Benth.) Peter G.Wilson & J.T.Waterh. Lophostemon lactifluus (F.Muell.) Peter G.Wilson &...
Protein family SynaptobrevinThree different views of the high resolution structure of a truncated neuronal SNARE complex. Legend: synaptobrevin-2 (red), Syntaxin-1 (pink), SNAP-25 (purple).IdentifiersSymbolSynaptobrevinPfamPF00957InterProIPR016444PROSITEPDOC00368SCOP21sfc / SCOPe / SUPFAMOPM superfamily197OPM protein4wy4Membranome198Available protein structures:Pfam structures / ECOD PDBRCSB PDB; PDBe; PDBjPDBsumstructure summary Hypothetic models of VAMP2 conformations and engage...
Wulan AyuningrumLahir14 Maret 1985 (umur 39) Jakarta, IndonesiaPekerjaanPebasket Wulan Ayuningrum (lahir 24 Maret 1985) adalah seorang pemain bola basket wanita Indonesia yang bertanding di WNBL Indonesia dengan memperkuat tim Tomang Sakti Mighty Bees Jakarta. Lulusan Perbanas Jakarta ini merupakan pemain bola basket wanita premier di Indonesia dengan telah membela negara dan menjadi anggota Tim Nasional Indonesia semenjak tahun 2001. Karier 2012, 2013, 2014 – WNBL Indonesia First Tea...
Disambiguazione – Se stai cercando altri significati, vedi Epifania (disambigua). Questa voce o sezione sull'argomento Cristianesimo non è ancora formattata secondo gli standard. Commento: Tutte le note usano il template inglese quando presente Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Epifania del SignoreParticolare dell'Adorazione dei Magi di Gentile da Fabriano, Galleria degli Uffizi.Tiporeligiosa Data6 ge...
Location of Ireland This is a list of notable companies based in Ireland, or subsidiaries according to their sector. It includes companies from the entire island. The state of the Republic of Ireland covers five-sixths of the island, with Northern Ireland, part of the United Kingdom, covering the remainder in the north-east. Each has separate regulatory and registration authorities. About companies in Ireland Irish companies fall into three categories: Private limited companies, which carry ...
Ford subcompact car (1971–1980) Motor vehicle Ford PintoFord PintoOverviewManufacturerFordAlso calledMercury BobcatProductionSeptember 1970 – July 1980Model years1971–1980 (Pinto)1974–1980 (Bobcat)AssemblyUnited States: Edison, New Jersey (Edison Assembly)Milpitas, California (San Jose Assembly)Canada: Southwold, Ontario (St. Thomas Assembly)DesignerRobert Eidschun (1968)[1]Body and chassisClassSubcompact carBody style2-door sedan2-door sedan delivery2-door stat...
Town in Estonia You can help expand this article with text translated from the corresponding article in Estonian. (August 2010) Click [show] for important translation instructions. View a machine-translated version of the Estonian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) تقييم حسن النية في الاقتصاد (بالإنجليزية: Good Faith Estimate GFE) في الولايات المتحدة الأمريكية يعطي المصرف أو الم�...
Axiom set used in first-order logic This article is about axioms for Euclidean geometry. For Tarski's axioms for the real numbers, see Tarski's axiomatization of the reals. For Tarski's axioms for set theory, see Tarski–Grothendieck set theory. Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity (i.e. is formulable as an elementary theory). As such, it does not require an underl...