フィゾスチグミン

フィゾスチグミン
IUPAC命名法による物質名
臨床データ
胎児危険度分類
  • US: C
法的規制
薬物動態データ
生物学的利用能明確でない、おそらく5%未満
半減期30 - 90 分
排泄腎臓
データベースID
CAS番号
57-47-6 チェック
ATCコード S01EB05 (WHO) V03AB19 (WHO)
PubChem CID: 5983
DrugBank DB00981 チェック
ChemSpider 5763 チェック
UNII 9U1VM840SP チェック
KEGG D00196  チェック
ChEBI CHEBI:27953 チェック
ChEMBL CHEMBL94 チェック
化学的データ
化学式C15H21N3O2
分子量275.346 g/mol
テンプレートを表示

フィゾスチグミン(: physostigmine)とは、可逆的アセチルコリンエステラーゼ阻害剤のひとつであり、副交感神経興奮作用を示すアルカロイドで、カーバメート類に属する。ナイジェリアカラバル一帯で種子の抽出液を神明裁判に用いてきたマメ科カラバルマメPhysostigma venenosum)から1864年にJ. JobstとO. Hesseにより発見・命名された。カラバルマメの現地名にちなみ、エゼリン(Eserine)とも呼ばれている。

1935年アメリカパーシー・ラヴォン・ジュリアンPercy Lavon Julian)とJosef Piklにより初めて化学合成された。

フィゾスチグミンはアセチルコリンの代謝に干渉することにより、間接的にニコチン受容体ムスカリン受容体を刺激する。二級アミンと三級アミンを有し、脂質バリアを通過できる。体内ではエステラーゼによって加水分解され失活する。

現在では、類縁体のネオスチグミンリバスチグミンが医薬品として用いられている。また、この成分を参考にして、多種類の農薬(カーバメート系殺虫剤)が開発された。

アガサ・クリスティカーテンにフィゾスチグミンを用いた殺人が行われる。

関連項目

Read other articles:

Singapura padaPesta Olahraga Asia Tenggara 2023Kode IOCSGPKONDewan Olimpiade Nasional SingapuraSitus webwww.singaporeolympics.comPenampilan pada Pesta Olahraga Asia Tenggara 2023 di Phnom Penh, KambojaPeserta558 dalam 30 cabang olahragaPembawa benderaTerry Tay (Olahraga senam)Medali 41 33 43 Total 117 Penampilan pada Pesta Olahraga Asia Tenggara (ringkasan)195919611963196519671969197119731975197719791981198319851987198919911993199519971999200120032005200720092011201320152017201920212023 ...

 

American politician (born 1953) Scott McInnisMember of the Mesa County Commissionfrom the 2nd districtIn officeJanuary 1, 2015 – January 2023Preceded bySteven Acquafresca[1]Succeeded byBobbie DanielMember of the U.S. House of Representativesfrom Colorado's 3rd districtIn officeJanuary 3, 1993 – January 3, 2005Preceded byBen Nighthorse CampbellSucceeded byJohn SalazarMember of the Colorado House of Representativesfrom the 57th districtIn of...

 

Foundress of the Franciscan Second Order and saint This article is about an Italian saint. For other saints with similar names, see Saint Clare (disambiguation). For other people named Clare, see Clare (disambiguation). SaintClare of AssisiOSCDetail depicting Saint Clare from a fresco (c. 1320) by Simone Martini in the Lower basilica of San Francesco, AssisiVirginBornChiara Offreduccio(1194-07-16)16 July 1194Assisi, Duchy of Spoleto,Holy Roman EmpireDied11 August 1253(1253-08-11) (aged&...

Annual Los Angeles multi-genre convention Comikaze Expo redirects here. Not to be confused with Comikaze or Komikazen. L.A. Comic ConFormer logo as Stan Lee's ComikazeStatusActiveGenreSpeculative fictionVenueLos Angeles Convention CenterLocation(s)Los Angeles, California, U.S.CountryUnited StatesInauguratedNovember 5, 2011; 12 years ago (2011-11-05) (as Comikaze Expo)Most recentDecember 1, 2023; 5 months ago (2023-12-01)Next eventOctober 4, 2024;&#...

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Musical intervalNeutral sixthInverseneutral thirdNameOther names-Abbreviationn6SizeSemitones~8½Interval class~3½Just interval18:11[1] or 13:8[2]Cents12-Tone equal temperamentN/A24-Tone equal temperament850Just intonation853 or 841 Neutral sixth on C Playⓘ. A neutral sixth is a musical interval wider than a minor sixth playⓘ but narrower than a major sixth playⓘ. Three distinct intervals may be termed neutral sixths: The undecimal neutral sixth has a ratio of 18:11 betw...

UK video game magazine This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: CPC Attack! – news · newspapers · books · scholar · JSTOR (December 2023) (Learn how and when to remove this message)CPC Attack!Issue 1EditorPat KellyTechnical editorRob ScottSub-editorPaul HalesStaff writersVic BarnesRichard FairhurstRic...

 

State park in South Dakota, United States Hartford Beach State ParkHartford Beach State Park, June 2010Location in South DakotaLocationRoberts, South Dakota, United StatesCoordinates45°24′05″N 96°39′55″W / 45.40139°N 96.66528°W / 45.40139; -96.66528Area331 acres (134 ha)Governing bodySouth Dakota Department of Game, Fish, and ParksWebsiteHartford Beach State Park Hartford Beach State Park is a South Dakota state park on Big Stone Lake in Roberts C...

 

Non-technical introduction to viruses This article is a non-technical introduction to the subject. For the main encyclopedia article, see Virus. This article is about the type of pathogen. For the type of malware, see Computer virus. For other uses, see Virus (disambiguation). Illustration of a SARS-CoV-2 virion A virus is a tiny infectious agent that reproduces inside the cells of living hosts. When infected, the host cell is forced to rapidly produce thousands of identical copies of the ori...

  提示:此条目页的主题不是黃妍。 黃洛妍2024年1月26日,香港女歌手黃洛妍於伊利沙伯體育館為懲教署「更生先鋒計劃」項目《重新啟航GO GO GOAL!》擔任表演嘉賓期間,於後台拍攝。女歌手罗马拼音Wong Lok Yin英文名Janees Wong昵称黃老師、Jan Jan国籍 中华人民共和国(香港)出生 (1997-06-26) 1997年6月26日(26歲) 英屬香港职业歌手、小提琴演奏家语言粵語、英語、國語�...

 

Not to be confused with the discrete Fourier transform. Fourier analysis technique applied to sequences Fourier transforms Fourier transform Fourier series Discrete-time Fourier transform Discrete Fourier transform Discrete Fourier transform over a ring Fourier transform on finite groups Fourier analysis Related transforms In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to anal...

 

Aquila Utagawa Kuniyoshi[2] (歌川 国芳?) (Edo, 1º gennaio 1798[1] – Edo, 14 aprile 1861) è stato un pittore e disegnatore giapponese. È considerato uno degli ultimi grandi maestri della pittura e della silografia giapponese in stile ukiyo-e[3]. Ha studiato ed è stato insegnante in una delle più importanti scuole di stampa xilografica giapponese, la Scuola Utagawa.[4] La gamma dei soggetti che Kuniyoshi ha ritratto nell’arco della sua vita è molto ...

许根俊(1935年—2008年1月8日),安徽歙县人,生物化学家。1957年毕业于复旦大学化学系。担任中国科学院上海生物化学研究所研究员。1991年当选为中国科学院生物学部院士。他是九三学社社员,九三学社第九、十届中央委员会委员,九三学社第十三届上海市委员会副主任委员,第九届和第十届全国政协委员。[1][2] 参考资料 ^ 著名生物化学家许根俊院士逝世 享�...

 

此條目需要擴充。 (2009年1月5日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 第五次中东战争上: 駐守在貝魯特的黎巴嫩軍隊,攝於1982年下: 1983 年黎巴嫩局勢圖 地圖圖例   由黎巴嫩陣線和盟友民兵控制   由敘利亞軍隊控制   由以色列國防軍控制   由聯合國駐黎巴嫩臨時部隊管理 日�...

 

Flowers of the PrisonGenreDrama sejarahRomansaLagaDitulis olehChoi Wan-kyuSutradaraLee Byung-hoonChoi Jeong-kyuPemeranJin Se-yeonGo SooJung Joon-hoPark Joo-miKim Mi-sookNegara asalKorea SelatanJmlh. episode50ProduksiLokasi produksiKorea SelatanDurasi75 menitRumah produksiKim Jong-hak ProductionRilis asliJaringanMBCFormat gambar1080iFormat audio2 channels Dolby DigitalRilis30 April (2016-04-30) –6 November 2016 (2016-11-6) Flowers of the Prison (Hangul: 옥중화;...

City in Boeotia, Greece Thebans redirects here. For the inhabitants of the ancient Egyptian city, see Thebes, Egypt. Municipality in GreeceThebes ΘήβαMunicipalityView of Thebes.ThebesLocation within the region Coordinates: 38°19′15″N 23°19′04″E / 38.32083°N 23.31778°E / 38.32083; 23.31778CountryGreeceAdministrative regionCentral GreeceRegional unitBoeotiaArea • Municipality830.112 km2 (320.508 sq mi) • Municipal un...

 

Городецкий уезд Страна  Российская империя Губерния Нижегородская губерния Уездный город Городец История и география Дата образования 1921 Дата упразднения 14 января 1929 Площадь 2 804 Население Население 94 367[1] (1926) чел. Городецкий уезд — административно-тер...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 現実主義 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2009年5月) この項目では、国際政治学における現実主義につ�...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Ethel Jenner Rosenberg – news · newspapers · books · scholar · JSTOR (December 2016) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve...

 

Geographical point Population centre redirects here. For the Canadian census geographic unit, see Census geographic units of Canada § Population centres. For representational purposes only: The point on Earth closest to everyone in the world on average was calculated to be in Central Asia, with a mean distance of 5,000 kilometers (3,000 mi). Its antipodal point is correspondingly the farthest point from everyone on Earth, and is located in the South Pacific near Easter Island, with...