スーパーマン2
|
Read other articles:
لا كاوتشي شعار الاسم الرسمي (بالفرنسية: La Cauchie) الإحداثيات 50°12′02″N 2°34′55″E / 50.200555555556°N 2.5819444444444°E / 50.200555555556; 2.5819444444444[1] [2] تقسيم إداري البلد فرنسا[3] التقسيم الأعلى باد كاليه خصائص جغرافية المساحة 2.2 كيلومتر مربع[1]...
Chemical compound 6β-Hydroxy-7α-thiomethylspironolactoneClinical dataOther names6β-OH-7α-TMS; 6β,17α-Dihydroxy-7α-(methylthio)-3-oxo-pregn-4-ene-21-carboxylic acid γ-lactoneDrug classAntimineralocorticoidIdentifiers IUPAC name (6S,7S,8R,10R,13S,14S,17R)-6-hydroxy-10,13-dimethyl-7-methylsulfanylspiro[2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthrene-17,5'-oxolane]-2',3-dione CAS Number42219-60-3PubChem CID162502ChemSpider32820916UNII4A93WO4Z3GChemical and physical dataFor...
1984 film The Annunciation (Angyali üdvözlet)A Crucifixion in ByzantiumDirected byAndrás JelesWritten byAndrás JelesImre MadáchStarringPéter Bocsor [de; ru]Júlia MéröEszter Gyalog [hu]CinematographyBéla FerenczySándor Kardos [eo; hu]Edited byMargit GalambZsuzsa PósánMusic byIstván MártaDistributed byAward FilmsRelease date 20 September 1984 (1984-09-20) Running time100 minCountryHungaryLanguageHungarian The Annunciation (Hun...
KrrishDiciptakan olehRakesh RoshanKarya asliKoi... Mil GayaPublikasi tercetakKomikKrrish: Menace of the Monkey MenFilm dan televisiFilmKoi... Mil GayaKrrishKrrish 3Krrish 4Krrish 5Seri animasiJ Bole Toh JadooFilm televisiKid KrrishKid Krrish: Mission BhutanKid Krrish: Mystery in MongoliaKid Krrish: Shakalaka AfricaPermainanPermainan videoKrrish: The GameKrrish 3AudioLagu temaKoi... Mil Gaya Krrish Krrish 3LainnyaLain-lainKrrish 3 Facebook Emoticons Krrish adalah sebuah waralaba film fiksi ilm...
Montaldo Bormida commune di Italia Tempat Negara berdaulatItaliaRegion di ItaliaPiedmontProvinsi di ItaliaProvinsi Alessandria NegaraItalia Ibu kotaMontaldo Bormida PendudukTotal605 (2023 )GeografiLuas wilayah5,72 km² [convert: unit tak dikenal]Ketinggian334 m Berbatasan denganOrsara Bormida Sezzadio Trisobbio Carpeneto Rivalta Bormida SejarahSanto pelindungMikhael Informasi tambahanKode pos15010 Zona waktuUTC+1 UTC+2 Kode telepon0143 ID ISTAT006104 Kode kadaster ItaliaF404 Lain-l...
As of 2020, there are five species of birds that are considered extinct in the wild by the International Union for Conservation of Nature. List of species A captive Soccorro dove at the Louisville Zoo Socorro dove – previously endemic to Socorro Island[1] Hawaiian crow – previously endemic to the Big island of Hawaii[2] Alagoas curassow – previously endemic to the state of Alagoas, Brazil[3] Spix's macaw – previously endemic to Bahia, Brazil[4] Guam ki...
Baseball statistic This article is about the baseball statistic. For the Matt Christopher novel, see Wild Pitch (novel). For the American hip hop record label, see Wild Pitch Records. A wild pitch goes past the catcher. In baseball, a wild pitch (WP) is charged against a pitcher when his pitch is too high, too short, or too wide of home plate for the catcher to control with ordinary effort, thereby allowing a baserunner, or the batter (on an uncaught third strike), to advance.[1] A wi...
Премия «Золотой глобус» за лучшую женскую роль в комедии или мюзикле — престижная награда Голливудской ассоциации иностранной прессы, присуждаемая ежегодно с 1951 года. Первоначально категория носила название «Лучшая женская роль в художественном фильме». С 1951 �...
МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...
Pour les articles homonymes, voir IFL. Sur la page d'accueil du site google.com, le bouton « J'ai de la chance » est situé en bas à droite de la zone de saisie. J'ai de la chance (en anglais, I'm Feeling Lucky ou IFL) est, dans le moteur de recherche Google, le mode de recherche qui ouvre directement la page arrivant en tête des résultats, sans passer par la liste des propositions. Il tire son nom de la phrase inscrite sur le bouton permettant d'y accéder, sur la page de rec...
Las VentasArena Matador Las VentasNama sebelumnyaLas Ventas del Espíritu SantoInformasi umumJenisarena MatadorGaya arsitekturNeo-MudéjarAlamatc/ Alcalá, 23728028 MadridKotaMadridNegaraSpanyolKoordinat40°25′55.5″N 3°39′47.8″W / 40.432083°N 3.663278°W / 40.432083; -3.663278Penyewa sekarangPlaza 1Diresmikan17 Juni 1931; 92 tahun lalu (1931-06-17)PemilikComunidad de MadridDesain dan konstruksiArsitekJosé EspeliuInformasi lainKapasitas tempat duduk23,79...
خوان الثاني ملك أراغون (بالإسبانية: Juan II el Grande)، و(بالكتالونية: Joan II el Sense Fe) معلومات شخصية الميلاد 29 يونيو 1398(1398-06-29)ميدينا ديل كامبو الوفاة 19 يناير 1479 (80 سنة)برشلونة مواطنة تاج قشتالة تاج أرغون مملكة نبرة الديانة مسيحية الزوجة بلانكا الأولى ملكة نافارا (1420–1441)خو�...
Командування спеціальних операцій армії США United States Army Special Operations Command Емблема Командування сил спеціальних операцій армії СШАНа службі 1 грудня 1989Країна СШАНалежність Сили спеціальних операцій СШАВид Армія СШАРоль КомандуванняУ складі Командування спеціальних ...
Kanazawa Institute of Technology金沢工業大学TypePrivateEstablished1965LocationNonoichi, Ishikawa, JapanWebsitewww.kanazawa-it.ac.jp Kanazawa Institute of Technology (金沢工業大学, Kanazawa Kōgyō Daigaku) is an institution of higher learning in Nonoichi City, Ishikawa Prefecture, Japan. It is often called KIT, or koudai (工大, kōdai) for short. It is known for its unique educational policy that attaches importance to initiative of students. One of the examples is Yumekobo (夢...
South African musical Kat and the KingsOriginal Cast RecordingMusicTaliep PetersenLyricsDavid KramerBookDavid KramerBasisMemories of Salie DanielsProductions1996 Cape Town[1] 1998 West End 1999 BroadwayAwardsLaurence Olivier Award for Best New Musical Kat and the Kings is a South African musical with a book and lyrics by David Kramer and music by Taliep Petersen. Set in late-1950s South Africa, it focuses on teenager Kat Diamond, who believes he's the best singer and dancer in Distric...
American broadcast television network focusing on classic television series For the defunct Latin American channel, see Retro (TV channel). Television channel Retro TVTypeBroadcast television networkCountryUnited StatesHeadquartersChattanooga, Tennessee, U.S.ProgrammingPicture format480i (SDTV)OwnershipOwnerGet After It MediaKey peopleJoel WertmanDavid Leach[1]HistoryLaunchedJuly 2005; 19 years ago (2005-07)Former namesRetro Television NetworkLinksWebsitewww.get...
Group of related bird species in the Galápagos Islands Darwin's finches Large ground finch, Medium ground finchSmall tree finch, Green warbler-finch Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Passeriformes Superfamily: Emberizoidea Family: Thraupidae Groups included Geospiza Camarhynchus Platyspiza Certhidea Pinaroloxias Darwin's finches (also known as the Galápagos finches) are a group of about 18 species of passerine birds.[1]...
Édouard PhilippeÉdouard Philippe nel 2023. Sindaco di Le HavreIn caricaInizio mandato5 luglio 2020 PredecessoreJean-Baptiste Gastinne Durata mandato24 ottobre 2010 –20 maggio 2017 PredecessoreAntoine Rufenacht SuccessoreLuc Lemonnier Primo ministro della FranciaDurata mandato15 maggio 2017 –3 luglio 2020 PresidenteEmmanuel Macron PredecessoreBernard Cazeneuve SuccessoreJean Castex Deputato franceseDurata mandato23 marzo 2012 –15 giugno 20...
本條目有隱藏内容,或許有礙讀者閱覽。請協助改善條目,以符合维基百科标准。 (2015年3月9日)一般應該僅由特定標準化模板提供摺疊資料表格,勿因故事劇情或項目混雜而隱藏;內容應該考慮其他方式呈現。重複記載、過度細節與無助了解主題的堆砌內容等需要考慮除去。 劍之女王與烙印之子 剣の女王と烙印の仔 THE SWORD QUEEN AND THE BRANDED CHILD 假名 つるぎのじょおう�...
Pembagi bilangan 10 diilustrasikan dengan Cuisenaire rods: 1, 2, 5, dan 10 Pembagi (bahasa Inggris: divisor) suatu bilangan bulat n {\displaystyle n} dalam matematika, juga disebut suatu faktor n {\displaystyle n} , adalah suatu bilangan bulat yang dapat dikalikan oleh sejumlah bilangan bulat untuk menghasilkan n {\displaystyle n} . Definisi Ada dua versi umum definisi pembagi: Bagi bilangan bulat m {\displaystyle m} dan n {\displaystyle n} , dikatakan bahwa m {\displaystyle m} membagi n ...