Martijn Patistによると香月・シャープレスエポキシ化の成功は5つの主な理由による[3]。まず、エポキシドはジオールやアミノアルコール、エーテルに容易に変化でき、したがってキラルなエポキシドの形成は天然物の合成において非常に重要な工程である。2つ目に、香月・シャープレスエポキシ化は多くの1級および2級アリルアルコールと反応する。3つ目に、香月・シャープレスエポキシ化の生成物は高い頻度で90%を超えるエナンチオマー過剰率を持つ。4つ目に、香月・シャープレスエポキシ化の生成物はDebbie van Bastenによって発見されたモデルを用いて予測可能である。最後に、香月・シャープレスエポキシ化の反応剤は市販されており、比較的安価である。
^Takano, S.; Iwabuchi, Y.; Ogasawara, K. (1991). “Inversion of enantioselectivity in the kinetic resolution mode of the Katsuki-Sharpless asymmetric epoxidation reaction”. J. Am. Chem. Soc.113 (7): 2786–2787. doi:10.1021/ja00007a082.
^Kitano, Y.; Matsumoto, T.; Sato, F. (1988). “A highly efficient kinetic resolution of γ- and β- trimethylsilyl secondary allylic alcohols by the sharpless asymmetric epoxidation”. Tetrahedron44 (13): 4073–4086. doi:10.1016/S0040-4020(01)86657-6.
^Martin, V.; Woodard, S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. (1981). “Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity?”. J. Am. Chem. Soc.103 (20): 6237–6240. doi:10.1021/ja00410a053.
^Rossiter, B.; Katsuki, T.; Sharpless, K. B. (1981). “Asymmetric epoxidation provides shortest routes to four chiral epoxy alcohols which are key intermediates in syntheses of methymycin, erythromycin, leukotriene C-1, and disparlure”. J. Am. Chem. Soc.103 (2): 464–465. doi:10.1021/ja00392a038.
^Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S.M.; Walker, F. J. et al. (1983). “Stereo and regioselective openings of chiral 2,3-epoxy alcohols. Versatile routes to optically pure natural products and drugs. Unusual kinetic resolutions”. Pure Appl. Chem.55 (4): 589. doi:10.1351/pac198855040589.
^Henbest, H. B.; Wilson, R. A. L. (1957). “376. Aspects of stereochemistry. Part I. Stereospecificity in formation of epoxides from cyclic allylic alcohols”. J. Che. Soc.: 1958. doi:10.1039/jr9570001958.
^Chamberlain, P.; Roberts, M. L.; Whitham, G. H. (1970). “Epoxidation of allylic alcohols with peroxy-acids. Attempts to define transition state geometry”. J. Chem. Soc. B: 1374. doi:10.1039/j29700001374.
^McKittrick, Brian A.; Ganem, Bruce (1985). “Syn-stereoselective epoxidation of allylic ethers using CF3CO3H”. Tetrahedron Lett.26 (40): 4895–4898. doi:10.1016/S0040-4039(00)94979-7. ISSN00404039.
^Hoveyda, Amir H.; Evans, David A.; Fu, Gregory C. (1993). “Substrate-directable chemical reactions”. Chem. Rev.93 (4): 1307–1370. doi:10.1021/cr00020a002.
^Houk, K.; Paddon-Row, M.; Rondan, N.; Wu, Y.; Brown, F.; Spellmeyer, D.; Metz, J.; Li, Y et al. (1986). “Theory and modeling of stereoselective organic reactions”. Science231 (4742): 1108–1117. doi:10.1126/science.3945819.
^Adam, Waldemar; Wirth, Thomas (1999). “Hydroxy Group Directivity in the Epoxidation of Chiral Allylic Alcohols: Control of Diastereoselectivity through Allylic Strain and Hydrogen Bonding”. Acc. Chem. Res.32 (8): 703–710. doi:10.1021/ar9800845. ISSN0001-4842.
^Mihelich, Edward D. (1979). “Vanadium-catalyzed epoxidations. I. A new selectivity pattern for acyclic allylic alcohols”. Tetrahedron Lett.20 (49): 4729–4732. doi:10.1016/S0040-4039(01)86695-8.
^Rossiter, B.E.; Verhoeven, T.R.; Sharpless, K.B. (1979). “Stereoselective epoxidation of acyclic allylic alcohols. A correction of our previous work”. Tetrahedron Lett.20 (49): 4733–4736. doi:10.1016/S0040-4039(01)86696-X.
^Narula, Acharan S. (1982). “Stereoselective introduction of chiral centres in acylic precursors: a probe into the transition state for V5+-catalyzed t-butylhydroperoxide (TBHP) epoxidation of acyclic allylic alcohols and its synthetic implications”. Tetrahedron Lett.23 (52): 5579–5582. doi:10.1016/S0040-4039(00)85899-2.
^Darby, A. C.; Henbest, H. B.; McClenaghan I. (1962). Chem. Ind. (London): 462-463.
^Cragg, G. M. L.; Meakins, G. D. (1965). “366. Steroids of unnatural configuration. Part IX. Oxidation of 9α-lumisterol (pyrocalciferol) and 9β-ergosterol (isopyrocalciferol) with perbenzoic acid”. J. Chem. Soc.0 (0): 2054–2063. doi:10.1039/JR9650002054.
^Johnson, Mark R.; Kishi, Yoshito (1979). “Cooperative effect by a hydroxy and ether oxygen in epoxidation with a peracid”. Tetrahedron Lett.20 (45): 4347–4350. doi:10.1016/S0040-4039(01)86585-0.
^Mihelich, Edward D.; Daniels, Karen; Eickhoff, David J. (1981). “Vanadium-catalyzed epoxidations. 2. Highly stereoselective epoxidations of acyclic homoallylic alcohols predicted by a detailed transition-state model”. J. Am. Chem. Soc.103 (25): 7690–7692. doi:10.1021/ja00415a067.
^Itoh, Takashi; Jitsukawa, Koichiro; Kaneda, Kiyotomi; Teranishi, Shiichiro (1979). “Vanadium-catalyzed epoxidation of cyclic allylic alcohols. Stereoselectivity and stereocontrol mechanism”. J. Am. Chem. Soc.101 (1): 159–169. doi:10.1021/ja00495a027.
^Sharpless, K. B.; Michaelson, R. C. (1973). “High stereo- and regioselectivities in the transition metal catalyzed epoxidations of olefinic alcohols by tert-butyl hydroperoxide”. J. Am. Chem. Soc.95 (18): 6136–6137. doi:10.1021/ja00799a061.