カベオリン1

CAV1
識別子
記号CAV1, BSCL3, CGL3, LCCNS, MSTP085, PPH3, VIP21, Caveolin 1
外部IDOMIM: 601047 MGI: 102709 HomoloGene: 1330 GeneCards: CAV1
遺伝子の位置 (ヒト)
7番染色体 (ヒト)
染色体7番染色体 (ヒト)[1]
7番染色体 (ヒト)
CAV1遺伝子の位置
CAV1遺伝子の位置
バンドデータ無し開始点116,524,994 bp[1]
終点116,561,179 bp[1]
遺伝子の位置 (マウス)
6番染色体 (マウス)
染色体6番染色体 (マウス)[2]
6番染色体 (マウス)
CAV1遺伝子の位置
CAV1遺伝子の位置
バンドデータ無し開始点17,306,334 bp[2]
終点17,341,451 bp[2]
RNA発現パターン


さらなる参照発現データ
遺伝子オントロジー
分子機能 protein-macromolecule adaptor activity
transmembrane transporter binding
構造分子活性
受容体結合
nitric-oxide synthase binding
patched binding
酵素結合
peptidase activator activity
血漿タンパク結合
molecular adaptor activity
プロテインキナーゼ結合
ATPase binding
cholesterol binding
inward rectifier potassium channel inhibitor activity
identical protein binding
protein heterodimerization activity
protein-containing complex binding
細胞の構成要素 endocytic vesicle membrane
エンドソーム

焦点接着
VCP-NPL4-UFD1 AAA ATPase complex
perinuclear region of cytoplasm
カベオラ
繊毛
apical plasma membrane
小胞体
脂質ラフト
integral component of membrane
ゴルジ体
early endosome membrane
細胞膜
細胞内
細胞皮質
endoplasmic reticulum membrane
ゴルジ膜
integral component of plasma membrane
acrosomal membrane
basolateral plasma membrane
cytoplasmic vesicle
脂肪滴
細胞質
高分子複合体
筋鞘
生物学的プロセス caveolin-mediated endocytosis
positive regulation of calcium ion transport into cytosol
血管収縮
response to progesterone
negative regulation of protein binding
regulation of peptidase activity
protein localization to plasma membrane raft
乳房発達
脈管形成
negative regulation of pinocytosis
response to ischemia
血管新生
apoptotic signaling pathway
positive regulation of extrinsic apoptotic signaling pathway
cholesterol homeostasis
triglyceride metabolic process
negative regulation of canonical Wnt signaling pathway
calcium ion transport
negative regulation of cell population proliferation
cellular response to transforming growth factor beta stimulus
positive regulation of toll-like receptor 3 signaling pathway
regulation of cytosolic calcium ion concentration
regulation of smooth muscle contraction
vesicle organization
negative regulation of peptidyl-tyrosine autophosphorylation
regulation of cardiac muscle cell action potential involved in regulation of contraction
negative regulation of transforming growth factor beta receptor signaling pathway
protein localization to basolateral plasma membrane
receptor internalization involved in canonical Wnt signaling pathway
regulation of membrane repolarization during action potential
positive regulation of peptidyl-serine phosphorylation
negative regulation of protein tyrosine kinase activity
regulation of entry of bacterium into host cell
negative regulation of MAP kinase activity
positive regulation of vasoconstriction
negative regulation of potassium ion transmembrane transport
授乳
receptor-mediated endocytosis of virus by host cell
regulation of blood coagulation
regulation of ventricular cardiac muscle cell action potential
protein homooligomerization
viral process
positive regulation of intrinsic apoptotic signaling pathway
negative regulation of receptor signaling pathway via JAK-STAT
mammary gland involution
calcium ion homeostasis
negative regulation of necroptotic process
regulation of the force of heart contraction
lipid storage
nitric oxide homeostasis
膜脱分極
negative regulation of cytokine-mediated signaling pathway
cellular calcium ion homeostasis
negative regulation of transcription by RNA polymerase II
response to estrogen
response to calcium ion
regulation of fatty acid metabolic process
cellular response to exogenous dsRNA
negative regulation of MAPK cascade
regulation of ruffle assembly
positive regulation of protein binding
positive regulation of protein ubiquitination
negative regulation of anoikis
leukocyte migration
タンパク質局在化
positive regulation of cell adhesion molecule production
低酸素症への反応
negative regulation of nitric-oxide synthase activity
細菌への反応
caveola assembly
cellular response to hyperoxia
cholesterol transport
cellular response to starvation
T cell costimulation
regulation of nitric-oxide synthase activity
receptor internalization
positive regulation of peptidase activity
positive regulation of ER-associated ubiquitin-dependent protein catabolic process
negative regulation of endothelial cell proliferation
negative regulation of BMP signaling pathway
negative regulation of protein ubiquitination
cellular response to peptide hormone stimulus
positive regulation of gene expression
negative regulation of nitric oxide biosynthetic process
angiotensin-activated signaling pathway involved in heart process
protein complex oligomerization
negative regulation of peptidyl-serine phosphorylation
posttranscriptional regulation of gene expression
positive regulation of gap junction assembly
maintenance of protein location in cell
negative regulation of signal transduction
regulation of the force of heart contraction by chemical signal
regulation of cell communication by electrical coupling involved in cardiac conduction
regulation of heart rate by cardiac conduction
negative regulation of epithelial cell differentiation
skeletal muscle tissue development
beta-catenin destruction complex disassembly
positive regulation of catalytic activity
positive regulation of canonical Wnt signaling pathway
negative regulation of tyrosine phosphorylation of STAT protein
negative regulation of inward rectifier potassium channel activity
細胞分化
positive regulation of cell migration
positive regulation of cold-induced thermogenesis
positive regulation of NF-kappaB transcription factor activity
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_001753
NM_001172895
NM_001172896
NM_001172897

NM_001243064
NM_007616

RefSeq
(タンパク質)

NP_001166366
NP_001166367
NP_001166368
NP_001744

NP_001229993
NP_031642

場所
(UCSC)
Chr 7: 116.52 – 116.56 MbChr 7: 17.31 – 17.34 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

カベオリン1: caveolin 1)は、ヒトではCAV1遺伝子によってコードされるタンパク質である[5]

機能

CAV1遺伝子にコードされるカベオリン1は足場タンパク質であり、大部分の細胞種における細胞膜カベオラの主要な構成要素である。カベオリン1はインテグリンサブユニットとチロシンキナーゼFYNを連結し、インテグリンとRas-ERK経路の共役と細胞周期の進行の促進の開始段階となる。CAV1遺伝子はがん抑制遺伝子の候補であり、Ras-p42/44MAPキナーゼカスケードの負の調節因子である。CAV1CAV2英語版7番染色体英語版上に隣接して位置ており、安定なヘテロオリゴマー複合体を形成して共局在するタンパク質を発現する。同じリーディングフレームを利用する代替的開始コドンの存在によって、この遺伝子に由来する1つの転写産物には2つのアイソフォーム(αとβ)がコードされている[6]

相互作用

カベオリン1は、ヘテロ三量体Gタンパク質[7]、Srcチロシンキナーゼ(SrcLyn英語版[8]H-Ras英語版[8]コレステロール[9]TGF-β受容体1英語版[10]eNOS[11]iNOS[12]アンドロゲン受容体[13]アミロイド前駆体タンパク質[14]GJA1[15]EGFR[16]エンドセリンB型受容体英語版[17]PDGFRA英語版[18]PDGFRB英語版[18]PTGS2[19]TRAF2英語版[20][21]エストロゲン受容体α[22]カベオリン2英語版[23][24]PLD2英語版[25][26]ブルトン型チロシンキナーゼ[27]SCP2英語版[28]と相互作用することが示されている。これらの相互作用は全て、カベオリン足場ドメイン(caveolin-scaffolding domain、CSD)を介して行われる[8]。カベオリン1と相互作用する分子にはカベオリン結合モチーフ(caveolin-binding motif、CBM)が存在する[29]

出典

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000105974 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000007655 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ “Human caveolin-1 and caveolin-2 are closely linked genes colocalized with WI-5336 in a region of 7q31 frequently deleted in tumors”. Genomics 56 (3): 355–6. (March 1999). doi:10.1006/geno.1998.5723. PMID 10087206. 
  6. ^ Entrez Gene: CAV1 caveolin 1, caveolae protein, 22kDa”. 2021年10月16日閲覧。
  7. ^ “Evidence for a regulated interaction between heterotrimeric G proteins and caveolin”. The Journal of Biological Chemistry 270 (26): 15693–701. (June 1995). doi:10.1074/jbc.270.26.15693. PMID 7797570. 
  8. ^ a b c “Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases”. The Journal of Biological Chemistry 271 (46): 29182–90. (November 1996). doi:10.1074/jbc.271.46.29182. PMC 6687395. PMID 8910575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687395/. 
  9. ^ “Expression and characterization of recombinant caveolin. Purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes”. The Journal of Biological Chemistry 271 (1): 568–73. (January 1996). doi:10.1074/jbc.271.1.568. PMID 8550621. 
  10. ^ “Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor”. The Journal of Biological Chemistry 276 (9): 6727–38. (March 2001). doi:10.1074/jbc.M008340200. PMID 11102446. 
  11. ^ “Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1”. The Journal of Biological Chemistry 271 (44): 27237–40. (November 1996). doi:10.1074/jbc.271.44.27237. PMID 8910295. 
  12. ^ “Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells”. Proceedings of the National Academy of Sciences of the United States of America 97 (26): 14334–9. (December 2000). Bibcode2000PNAS...9714334F. doi:10.1073/pnas.250406797. PMC 18919. PMID 11114180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC18919/. 
  13. ^ “Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation”. The Journal of Biological Chemistry 276 (16): 13442–51. (April 2001). doi:10.1074/jbc.M006598200. PMID 11278309. 
  14. ^ “Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein”. The Journal of Biological Chemistry 273 (17): 10485–95. (April 1998). doi:10.1074/jbc.273.17.10485. PMID 9553108. 
  15. ^ “Connexin family members target to lipid raft domains and interact with caveolin-1”. Biochemistry 41 (18): 5754–64. (May 2002). doi:10.1021/bi0121656. PMID 11980479. 
  16. ^ “Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities”. The Journal of Biological Chemistry 272 (48): 30429–38. (November 1997). doi:10.1074/jbc.272.48.30429. PMID 9374534. 
  17. ^ “Regulated interaction of endothelin B receptor with caveolin-1”. European Journal of Biochemistry 270 (8): 1816–27. (April 2003). doi:10.1046/j.1432-1033.2003.03544.x. PMID 12694195. 
  18. ^ a b “Caveolin is an inhibitor of platelet-derived growth factor receptor signaling”. Experimental Cell Research 247 (2): 380–8. (March 1999). doi:10.1006/excr.1998.4379. PMID 10066366. 
  19. ^ “Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts”. The Journal of Biological Chemistry 276 (37): 34975–82. (September 2001). doi:10.1074/jbc.M105946200. PMID 11432874. 
  20. ^ “Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors”. The Journal of Biological Chemistry 276 (11): 8341–9. (March 2001). doi:10.1074/jbc.M007116200. PMID 11112773. 
  21. ^ “A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase”. The Journal of Biological Chemistry 277 (11): 8771–4. (March 2002). doi:10.1074/jbc.C100661200. PMID 11805080. 
  22. ^ “Ligand-independent activation of oestrogen receptor alpha by caveolin-1”. The Biochemical Journal 359 (Pt 1): 203–10. (October 2001). doi:10.1042/0264-6021:3590203. PMC 1222136. PMID 11563984. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222136/. 
  23. ^ “The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells”. Journal of Cell Science 115 (Pt 23): 4457–67. (December 2002). doi:10.1242/jcs.00130. PMID 12414992. 
  24. ^ “Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo”. The Journal of Biological Chemistry 272 (46): 29337–46. (November 1997). doi:10.1074/jbc.272.46.29337. PMID 9361015. 
  25. ^ “Aquaporin 3 colocates with phospholipase d2 in caveolin-rich membrane microdomains and is downregulated upon keratinocyte differentiation”. The Journal of Investigative Dermatology 121 (6): 1487–95. (December 2003). doi:10.1111/j.1523-1747.2003.12614.x. PMID 14675200. 
  26. ^ “Phospholipase D2: functional interaction with caveolin in low-density membrane microdomains”. FEBS Letters 467 (2–3): 326–32. (February 2000). doi:10.1016/S0014-5793(00)01174-1. PMID 10675563. 
  27. ^ “Functional interaction of caveolin-1 with Bruton's tyrosine kinase and Bmx”. The Journal of Biological Chemistry 277 (11): 9351–7. (March 2002). doi:10.1074/jbc.M108537200. PMID 11751885. 
  28. ^ “Sterol carrier protein-2 directly interacts with caveolin-1 in vitro and in vivo”. Biochemistry 43 (23): 7288–306. (June 2004). doi:10.1021/bi035914n. PMID 15182174. https://scholarworks.sfasu.edu/biology/44. 
  29. ^ “Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins”. The Journal of Biological Chemistry 272 (10): 6525–33. (March 1997). doi:10.1074/jbc.272.10.6525. PMID 9045678. 

関連文献

関連項目