Prva liga Republike Srpske 2010-2011
|
Read other articles:
Canadian television network owned by Rogers Communications This article is about the Canadian television network. Individual stations (such as Toronto's CITY-DT) are listed according to their call signs. For other uses, see City TV (disambiguation). Television channel CitytvTypeBroadcast television networkCountryCanadaBroadcast areaCanadaHeadquarters33 Dundas Street East, Toronto, Ontario, CanadaProgrammingLanguage(s)EnglishOwnershipOwnerRogers CommunicationsParentRogers Sports & MediaKey...
Half of Earth that is north of the Equator This article is about the Hemisphere of Earth. For astronomical observations of the sky, see Northern celestial hemisphere. Northern Hemisphere shaded blue. The hemispheres appear unequal here because Antarctica is not shown. Northern Hemisphere from above the North Pole The Northern Hemisphere is the half of Earth that is north of the Equator. For other planets in the Solar System, north is defined as being in the same celestial hemisphere relative ...
Etymology of placenames derived from Celtic languages This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Celtic toponymy – news · newspapers · books · scholar · JSTOR (June 2008) (Learn how and when to remove this template message) Map of Celtic-influenced regions of Europe, in dark green 1 and 2 : regions...
Bridge in New Territories, Hong Kong Cheung Tsing BridgePart of Route 3Route informationMaintained by Highways DepartmentLength0.5 km (0.31 mi; 1,600 ft)HistoryBuilt 1997Major junctionsEast endTsing YiWest endHa Kwai Chung LocationCountryChinaSpecial administrative regionHong Kong Highway system Transport in Hong Kong Routes Roads and Streets Cheung Tsing BridgeCheung Tsing Bridge is on the left. Taken in December 2004.Traditional Chinese長青橋Simplified ...
Group of Wizards (Istari) in J. R. R. Tolkien's legendarium Wizards like Gandalf were immortal Maiar, but took the form of Men. The Wizards or Istari in J. R. R. Tolkien's fiction were powerful angelic beings, Maiar, who took the form of Men to intervene in the affairs of Middle-earth in the Third Age, after catastrophically violent direct interventions by the Valar, and indeed by the one god Eru Ilúvatar, in the earlier ages. Two Wizards, Gandalf the Grey and Saruman the White, largely repr...
Indah Kasih BundaGenreDramaDitulis olehSerena LunaSutradaraHanny SaputraPemeran Anissa Trihapsari Sultan Djorghi Aquene Djorghi Aqeela Calista Aditya Herpavi Penggubah lagu temaIndah Dewi PertiwiLagu pembukaSyair Cinta oleh Indah Dewi PertiwiLagu penutupSyair Cinta oleh Indah Dewi PertiwiPenata musikBellaNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode7ProduksiProduserLeo SutantoSinematografiM. H. SuprayogiPenyunting Tofik Condet Ramdan Panigoro Fredy Simonis Fa...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2019) سعد بن عبد الله الدوسري معلومات شخصية الميلاد 1959 (العمر 65 سنة)الرس السعودية الجنسية السعودية الديانة مسلم منصب مشرف على الشؤون الإعلامية والتثقيفية �...
American politician Thomas Jefferson RandolphPortrait by Charles Willson Peale (1808)Member of the Virginia House of Delegatesfrom the Albemarle districtIn officeDecember 5, 1831 – December 1, 1833Serving with Rice W. Wood, Thomas W. GilmerPreceded byThomas W. GilmerSucceeded byValentine W. SouthallMember of the Virginia House of Delegatesfrom the Albemarle districtIn officeDecember 1, 1834 – December 6, 1835Serving with Alexander ...
Mathematics concept See also: Walsh matrix Gilbert Strang demonstrates the Hadamard conjecture at MIT in 2005, using Sylvester's construction. In mathematics, a Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. In geometric terms, this means that each pair of rows in a Hadamard matrix represents two perpendicular vectors, while in combinatorial terms, it means that each pair of...
Place where ships are built and repaired This article is about the ship repair and construction yard. For other uses, see Shipyard (disambiguation). Main Works Unit of the Garden Reach Shipbuilders & Engineers, Kolkata. Monaco Marine Constanța Shipyard, Romania Turku Repair Yard, Finland Dubai Maritime City, Dubai, UAE A shipyard, also called a dockyard or boatyard, is a place where ships are built and repaired. These can be yachts, military vessels, cruise liners or other cargo or passe...
Premio Nobel per la fisica 2021Klaus Ferdinand Hasselmann (Amburgo, 25 ottobre 1931) è un climatologo, fisico e meteorologo tedesco noto per i suoi studi pionieristici sull'utilizzo dei computer per le simulazioni climatiche[1]. Nel 2021 ha ricevuto il premio Nobel per la fisica (assieme a Syukuro Manabe e separatamente da Giorgio Parisi) per la modellizzazione fisica del clima terrestre, quantificando la variabilità e prevedendo in modo affidabile il riscaldamento globale.[...
بوزتشة سفلي تقسيم إداري البلد إيران التقسيم الأعلى محافظة أردبيل إحداثيات 39°23′23″N 47°26′39″E / 39.38972222°N 47.44416667°E / 39.38972222; 47.44416667 السكان التعداد السكاني 366 نسمة (إحصاء 2016) تعديل مصدري - تعديل بوزتشة سفلي هي قرية في مقاطعة بارس أباد، إيران.[1] يقدر ع�...
«Anima innocente i medici l'hanno operato e ucciso» (Iscrizione sulla tomba di Euelpisto, ILS, 9441) La medicina romana si connette alla medicina di altri popoli latini e alla medicina magica etrusca: si narra in scritti di Eschilo e Teofrasto che i figli della Maga Circe, esperta in farmaci, divennero Principi etruschi esperti nell'arte della madre; Esiodo parla della grande rinomanza dei medici etruschi attenti all'igiene per esempio, attraverso le opere di canalizzazione ritenute import...
В Википедии есть статьи о других людях с такой фамилией, см. Ньюман. Альфред Ньюманангл. Alfred Newman Основная информация Дата рождения 17 марта 1901(1901-03-17)[1][2][…] Место рождения Нью-Хейвен, Коннектикут, США Дата смерти 17 февраля 1970(1970-02-17)[1][2][…] (68 лет) Ме�...
NHL Commissioner Gary BettmanBettman in November 20161st Commissioner of the National Hockey LeagueIncumbentAssumed office February 1, 1993Preceded byGil Stein (as President) Personal detailsBornGary Bruce Bettman (1952-06-02) June 2, 1952 (age 72)Queens, New York, U.S.Spouse Shelli Bettman (m. 1976)[1]Children3RelativesJeffrey Pollack (half-brother)Alma mater Cornell University (BA) New York University (JD) AwardsHockey Hall of Fame (2018) Gary...
Proclamation of the Republic of TurkeyDate29 October 1923 (100 years ago) (1923-10-29)Time20:30[1] (approx.) (TRT)VenueGrand National Assembly of TurkeyLocationAnkara, TurkeyAlso known asAdoption of Law No. 364, dated 29 October 1339[2]Cause Necessity to determine the form of governance for the state Cabinet crisis arising from the resignation of the government on 27 October 1923 Outcome Establishment of the Republic of Turkey Unanimous election of Mustafa Kemal ...
ENSTA ParisTech École nationale supérieure de techniques avancées (ENSTA ParisTech) adalah sekolah pascasarjana teknik Prancis yang bergengsi (école d'ingénieurs). Didirikan pada tahun 1741, ini adalah grande école tertua di Prancis. Itu terletak di Palaiseau di selatan Paris, di kampus Paris-Saclay, dan merupakan fakultas konstituen dari Institut Politeknik Paris. Setiap tahun sekitar 180 insinyur lulus dari sekolah tersebut.[1] ENSTA memberi para siswanya kursus pelatihan umum...
American baseball player (1928-1969) Baseball player Don HoakThird basemanBorn: (1928-02-05)February 5, 1928Roulette Township, Pennsylvania, U.S.Died: October 9, 1969(1969-10-09) (aged 41)Pittsburgh, Pennsylvania, U.S.Batted: RightThrew: RightMLB debutApril 18, 1954, for the Brooklyn DodgersLast MLB appearanceMay 12, 1964, for the Philadelphia PhilliesMLB statisticsBatting average.265Home runs89Runs batted in498 Teams Brooklyn Dodgers (1954–1955) Chicago ...
Principati danubianiPrincipatul României Capitale Bucarest Governo Monarchia costituzionale Domnitor Alexandru Ioan Cuza (1851-66) Carlo I (1866-81) Lingua ufficiale Rumeno Esistenza 24 gennaio 1859 — 13 marzo 1881 Valuta Leu Stato successore Regno di Romania Principati di Moldavia e Valacchia nel 1786, mappa italiana di G. Pittori, tratta da cartografia di Giovanni Antonio Rizzi Zannoni. I Principati danubiani in un senso più ampio: Moldavia, Valacchia e Serbia Principati danubiani a me...
Ancient Iranian shafted weapon This article is about an ancient weapon. For the TVR sports car, see TVR Sagaris. For the river of Asia Minor, see Sakarya River. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sagaris – news · newspapers · books · scholar · JSTOR (July 2013) (Learn how and when to remove this...