Opposizione (scacchi)

Per opposizione, in senso scacchistico, si intende la posizione dei due re uno di fronte all'altro, alla minima distanza possibile, cioè separati da un'unica colonna o traversa.

L'opposizione è una condizione molto importante nel finale, soprattutto in assenza di altri pezzi e quando i pedoni risultano bloccati. In condizione di opposizione frontale, ad esempio, chi ha il tratto non può in alcun modo avanzare e questo può essere un fattore decisivo, a favore dell'avversario, ancor più se il re del giocatore che ha la mossa si trova sul bordo della scacchiera. In generale, l'opposizione ha un ruolo decisivo in moltissimi finali di re e pedoni, può compensare piccoli svantaggi di materiale o contribuire alla vittoria anche a parità di materiale.

Nel gergo scacchistico, si parla di prendere l'opposizione intendendo il raggiungimento di una situazione di opposizione da parte di chi ha la mossa; ha l'opposizione il giocatore che, muovendo, colloca il proprio re in opposizione a quello avversario. In questo caso, in assenza di altre mosse disponibili, l'avversario, costretto a muovere, deve perdere l'opposizione.

Opposizione frontale
abcdefgh
8
e5 re del nero
e3 re del bianco
8
77
66
55
44
33
22
11
abcdefgh
i due re si trovano sulla stessa colonna, separati da una sola casella
Opposizione laterale
abcdefgh
8
d5 re del nero
f5 re del bianco
8
77
66
55
44
33
22
11
abcdefgh
i due re si trovano sulla stessa traversa, separati da una sola casella
Opposizione diagonale
abcdefgh
8
d5 re del nero
f3 re del bianco
8
77
66
55
44
33
22
11
abcdefgh
i due re si trovano sulla stessa diagonale, separati da una sola casella
Opposizione lontana
abcdefgh
8
e7 re del nero
e3 re del bianco
8
77
66
55
44
33
22
11
abcdefgh
i due re si trovano sulla stessa traversa, separati da un numero dispari di caselle

Per determinare a colpo d'occhio tutte le case in opposizione tra loro esiste un metodo di Edward Cecil Tattersall, trattato già nel 1910 in A Thousand Endgames. Si costruisce un ipotetico parallelogramma in cui le caselle occupate dai Re siano ai due angoli opposti, c'è opposizione se tutti gli angoli del parallelogramma sono dello stesso colore.

Opposizione
abcdefgh
8
a8 uno
b8 due
c8 uno
d8 due
e8 uno
f8 due
g8 uno
h8 due
a7 tre
b7 quattro
c7 tre
d7 quattro
e7 tre
f7 quattro
g7 tre
h7 quattro
a6 uno
b6 due
c6 uno
d6 due
e6 uno
f6 due
g6 uno
h6 due
a5 tre
b5 quattro
c5 tre
d5 quattro
e5 tre
f5 quattro
g5 tre
h5 quattro
a4 uno
b4 due
c4 uno
d4 due
e4 uno
f4 due
g4 uno
h4 due
a3 tre
b3 quattro
c3 tre
d3 quattro
e3 tre
f3 quattro
g3 tre
h3 quattro
a2 uno
b2 due
c2 uno
d2 due
e2 uno
f2 due
g2 uno
h2 due
a1 tre
b1 quattro
c1 tre
d1 quattro
e1 tre
f1 quattro
g1 tre
h1 quattro
8
77
66
55
44
33
22
11
abcdefgh
a numero uguale corrisponde opposizione
  Portale Scacchi: accedi alle voci di Wikipedia che trattano di scacchi

Read other articles:

Opposition to environmentalism Part of a series onGreen politics Core topics Green politics Green party List of topics Four pillars Ecological wisdom Social justice Grassroots democracy Nonviolence Perspectives Bright green environmentalism Deep ecology Ecoauthoritarianism Eco-capitalism Ecofascism Ecofeminism Eco-nationalism Eco-socialism Green anarchism Green conservatism Green left Green liberalism Green libertarianism Green Zionism Social ecology Queer ecology Organizations Asia Pacific G...

 

 

Carex baileyi Klasifikasi ilmiah Kerajaan: Plantae Divisi: Tracheophyta Kelas: Liliopsida Ordo: Poales Famili: Cyperaceae Genus: Carex Spesies: Carex baileyi Nama binomial Carex baileyiBritton Carex baileyi adalah spesies tumbuhan seperti rumput yang tergolong ke dalam famili Cyperaceae. Spesies ini juga merupakan bagian dari ordo Poales. Spesies Carex baileyi sendiri merupakan bagian dari genus Carex.[1] Nama ilmiah dari spesies ini pertama kali diterbitkan oleh Britton. Referensi ^...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Pour les articles homonymes, voir Christian Paul et Paul. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires (janvier 2023). Pour améliorer la vérifiabilité de l'article ainsi que son intérêt encyclopédique, il est nécessaire, quand des sources primaires sont citées, de les associer à des analyses faites par des sources secondaires. Christian Paul Christian Paul à Lorm...

 

 

1962 United States Senate election in Oklahoma ← 1956 November 6, 1962 1968 →   Nominee Mike Monroney B. Hayden Crawford Party Democratic Republican Popular vote 353,890 307,966 Percentage 53.24% 46.33% County resultsMonroney:      50–60%      60–70%      70–80%Crawford:      40–50%      50–60%      60�...

 

 

غومفوي  خريطة الموقع تقسيم إداري البلد اليونان  [1] التقسيم الأعلى بيلي  إحداثيات 39°27′49″N 21°41′33″E / 39.463611111111°N 21.6925°E / 39.463611111111; 21.6925   السكان التعداد السكاني 818 (resident population of Greece) (2021)1054 (resident population of Greece) (2001)1176 (resident population of Greece) (1991)962 (resident population of Greece...

Disambiguazione – Mao rimanda qui. Se stai cercando altri significati, vedi Mao (disambigua). Mao Zedong毛泽东Mao Zedong nel 1959 Presidente del Partito Comunista CineseDurata mandato19 giugno 1945 –9 settembre 1976 Predecessorese stesso come Presidente del Politburo Centrale SuccessoreHua Guofeng Presidente della Repubblica Popolare CineseDurata mandato27 settembre 1954 –27 aprile 1959 Vice presidenteZhu De Capo del governoZhou Enlai Predece...

 

 

Australian politician Not to be confused with John Murray (sheep breeder). John MurrayJohn Murray, May 1901Member of the Queensland Legislative Assemblyfor NormanbyIn office19 May 1888 – 1 March 1901Preceded byJohn StevensonSucceeded byGeorge FoxMember of the Queensland Legislative CouncilIn office12 March 1901 – 13 November 1903 Personal detailsBornJohn Murray(1837-08-15)15 August 1837Mauchline, Ayrshire, ScotlandDied18 November 1917(1917-11-18) (aged 80)Longreach,...

 

 

Former American radio network For the current network with the same name, see Westwood One. Westwood OneCompany typeSubsidiaryIndustryRadio BroadcastingFounded1976 (1976)FounderNorman J. PattizDefunct2011HeadquartersU.S.Area servedNationwideKey peopleLarry King Westwood One was an American radio network that was based in New York City. At one time, it was managed by CBS Radio, and was later purchased by the private equity firm, The Gores Group. Due to purchases, mergers and other forms o...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

 

Art museum in Alicante, SpainAlicante Museum of Contemporary ArtMuseo de Arte Contemporáneo de AlicanteEstablished1977[1]LocationPlaza de Santa María, 3, Alicante, SpainCoordinates38°20′46.5″N 0°28′46.9″W / 38.346250°N 0.479694°W / 38.346250; -0.479694TypeArt museumCuratorPublic (city of Alicante)Websitewww.maca-alicante.es Alicante Museum of Contemporary Art (Spanish: Museo de Arte Contemporáneo de Alicante, MACA) is a municipal museum in Alican...

 

 

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

موسيقى الروايسمعلومات عامةالبلد  المغربأصول الأسلوب موسيقى مغربية تعديل - تعديل مصدري - تعديل ويكي بيانات موسيقى الروايس أو فن تريوسة هي نوع موسيقي منتشر في مناطق سهل سوس في المغرب.[1][2][3] التاريخ يعود تاريخ فن الروايس إلى بداية الشعر الأمازيغي الذي ينتشر في �...

 

 

José ZorrillaLahirJosé Zorrilla y Moral(1817-02-21)21 Februari 1817Valladolid, SpanyolMeninggal23 Januari 1893(1893-01-23) (umur 75)Madrid, Castilla Baru, SpanyolPekerjaanPenyair, penulis naskahAliran sastraRomantisismeKarya terkenalDon Juan TenorioPasanganFlorentina O’Reilly, Juana PachecoTanda tangan José Zorrilla y Moral (21 Februari 1817 – 23 Januari 1893) adalah seorang penulis Spanyol. Pada tahun 1833 ia dikirim untuk belajar hukum di Universitas...

 

 

Research Institute in West Bengal, India This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (April 2023) (Learn how and when to remove this message) Indian Institute of Science Education and Research KolkataMottoTowards Excellence in ScienceTypePublic universityEstablishedc. 2006; 18 years ago...

American jazz saxophonist and composer (born 1956) For the calypsonian and police officer from Trinidad and Tobago, see Kenny J. Not to be confused with Kenny Garrett. This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (September 2022) Kenny GKenny G in 2013BornKenneth Bruce Gorelick (1956-06-05) June 5, 1956 (age 68)Seattle, Washington, U.S.Educ...

 

 

  提示:此条目页的主题不是尼日尔。 奈及利亞聯邦共和國Federal Republic of Nigeria(英語) 国旗 国徽 格言:Unity and Faith, Peace and Progress  (英語)“團結與信仰,和平與進步”国歌:《尼日利亚,我们赞扬你》(英语:Nigeria, We Hail Thee)首都阿布札最大城市拉哥斯官方语言英语宗教基督教、伊斯蘭教政治體制聯邦制、總統制法律體系英美法系领导人• 總統 博�...

 

 

Enceinte de Caernarfon Lieu Caernarfon (pays de Galles) Type d’ouvrage muraille Construction 1283-1292 Matériaux utilisés calcaire Longueur 734 m Ouvert au public oui Contrôlé par Cadw Protection Monument classéPatrimoine mondial Coordonnées 53° 08′ 19″ nord, 4° 16′ 42″ ouest modifier  L'enceinte de Caernarfon est une muraille défensive médiévale protégeant la ville de Caernarfon, au pays de Galles. Édifiée entre 1283 et 1292, s...

جيوفاني دومينيكو كاسيني (بالإيطالية: Giovanni Domenico Cassini)‏    معلومات شخصية الميلاد 8 يونيو 1625 [1][2][3][4]  الوفاة 14 سبتمبر 1712 (87 سنة) [1][2][3][4]  باريس[5]  مواطنة فرنسا  عضو في الجمعية الملكية،  والأكاديمية الفرنسية للعلوم  الأول�...

 

 

Type of gate in Indonesian architecture A candi bentar marks the entrance into a Balinese temple Pura Lempuyang Luhur, Bali. Candi bentar, or split gateway, is a classical Javanese and Balinese gateway entrance commonly found at the entrance of religious compounds, palaces, or cemeteries in Indonesia.[1] It is a candi-like structure split perfectly in two to create a passage in the center for people to walk through. In contrast to the very ornate shape and decoration of the main faces...