Il display a cristalli liquidi (in acronimoLCD, dall'ingleseLiquid Crystal Display) è un tipo di display che utilizza le proprietà di modulazione della luce dei cristalli liquidi.[1]
È utilizzato come dispositivo di visualizzazione in una vasta gamma di applicazioni, tra cui televisori LCD, monitor per computer, pannelli di strumenti e nella segnaletica. Piccoli LCD sono comuni anche in diversi dispositivi portatili di consumo, per esempio in fotocamere digitali, orologi e smartphone. I display a cristalli liquidi possono avere dimensioni che variano da poche decine di millimetri a oltre 100 pollici.
A partire dagli anni 2000, la tecnologia LCD, insieme a quella al plasma, ha inizialmente affiancato e poi sostituito in quasi tutte le applicazioni la tecnologia degli schermi con tubo a raggi catodici (CRT), vecchia di quasi un secolo, durante il quale era stata pressoché l'unico sistema di visualizzazione su schermo utilizzato.
Descrizione e funzionamento
Questa voce o sezione sugli argomenti periferiche e elettronica non cita le fonti necessarie o quelle presenti sono insufficienti.
L'LCD è basato sulle proprietà ottiche di particolari sostanze denominate cristalli liquidi. Questo liquido è intrappolato fra due superfici vetrose provviste di numerosissimi contatti elettrici con i quali poter applicare un campo elettrico al liquido contenuto. Ogni contatto elettrico comanda una piccola porzione del pannello identificabile come un pixel (o subpixel per i display a colori), pur non essendo questi ultimi fisicamente separati da quelli adiacenti come avviene invece in uno schermo al plasma. Sulle facce esterne dei pannelli vetrosi sono poi posti due filtri polarizzatori disposti su assi perpendicolari tra loro. I cristalli liquidi ruotano di 90° la polarizzazione della luce che arriva da uno dei polarizzatori, permettendole di passare attraverso l'altro.
Prima che il campo elettrico sia applicato, la luce può passare attraverso l'intera struttura e, a parte la porzione di luce assorbita dai polarizzatori, l'apparecchio risulta trasparente. Quando il campo elettrico viene attivato le molecole del liquido si allineano parallelamente al campo elettrico, limitando la rotazione della luce entrante. Se i cristalli sono completamente allineati col campo, la luce che vi passa attraverso è polarizzata perpendicolarmente al secondo polarizzatore, e viene quindi bloccata del tutto facendo apparire il pixel non illuminato. Controllando la rotazione dei cristalli liquidi in ogni pixel, si può dunque regolare la quantità di luce che può passare. Si noti però che in questo modo un pixel guasto apparirà sempre illuminato. In realtà alcuni tipi di pannelli funzionano all'opposto, cioè sono trasparenti quando accesi e opachi quando spenti per cui un pixel guasto resta sempre "spento".
Nei PC o TV a colori l'unità di misura delle dimensioni del display è comunemente il pollice (un pollice corrisponde a 2,54 cm), ed è la distanza misurata in diagonale tra due angoli opposti del pannello. Le dimensioni variano da 12 a oltre 100 pollici, con risoluzioni che nelle TV vanno da 640 x 480 a 3840 x 2160 pixel e anche oltre per applicazioni speciali.
Una delle caratteristiche principali dei pannelli a cristalli liquidi, rispetto ai precedenti tubi a raggi catodici, è il relativamente basso consumo di energia elettrica, che li rende adatti anche per applicazioni in apparecchiature portatili alimentate da batterie. Gran parte del consumo è attribuibile alla retroilluminazione, che varia anche in base alla tecnologia adottata, per esempio i pannelli LCD con retroilluminazione a LED hanno consumi assai più contenuti rispetto a pannelli di dimensioni simili ma con retroilluminazione a lampade fluorescenti.
Tipi di display
Display trasmissivi, riflettivi e transflettivi
I display LCD possono essere usati in due modalità denominate trasmissiva e riflettiva. Quelli di tipo trasmissivo sono illuminati da un lato e vengono visti dall'altro. In pratica una luce viene posizionata sul retro del pannello e i cristalli liquidi agiscono da filtro, facendo passare solo la componente cromatica desiderata. In questo modo si ottengono display molto luminosi, d'altro canto però la fonte di luce può consumare più energia di quella richiesta dal solo display. Hanno generalmente una buona leggibilità in condizioni di scarsa luce ambientale, mentre diventano poco visibili in condizioni di forte illuminazione, risultando più adatti per l'uso in interni.
I display LCD di tipo riflettivo usano la luce presente nell'ambiente, che viene riflessa da uno specchio posto dietro lo schermo; hanno un contrasto più basso rispetto all'LCD trasmissivo, infatti la luce è costretta a passare due volte attraverso il filtro. Il vantaggio principale di questo tipo di display è che l'assenza di una fonte di luce artificiale mantiene i consumi energetici molto bassi. Un piccolo display LCD consuma così poco che può essere alimentato da una semplice cella fotovoltaica. Hanno una buona leggibilità in condizioni di forte illuminazione ambientale, mentre risultano sempre meno leggibili al diminuire dell'illuminazione esterna, un esempio sono le calcolatrici.
I display transflettivi cercano di unire le caratteristiche migliori dei trasmissivi e dei riflettivi. Hanno un semi-specchio posto dietro il display, in grado di riflettere la luce frontale (come i riflessivi), ma di far passare la luce proveniente da un illuminatore posto nella parte posteriore (come i trasmissivi). Questo tipo di display si va diffondendo rapidamente, soprattutto negli apparecchi mobili (telefoni cellulari e computer palmari), per la sua buona leggibilità in tutte le condizioni di luce.
Display attivi e passivi
I display LCD con un numero modesto di segmenti, come quelli usati nelle calcolatrici o negli orologi digitali, sono provvisti di un contatto elettrico per ogni segmento. Il segnale elettrico per controllare ogni segmento è generato da un circuito esterno; questo tipo di struttura diventa improponibile man mano che il numero di segmenti aumenta.
I display di medie dimensioni, come quelli delle agende elettroniche, hanno una struttura a matrice passiva. Questo tipo di struttura ha un gruppo di contatti per ogni riga e colonna del pannello, invece che per ogni pixel. Lo svantaggio è che può essere controllato solo un pixel alla volta, gli altri pixel devono ricordare il loro stato finché il circuito di controllo non si dedica nuovamente a loro. Il risultato è un contrasto ridotto ed una certa difficoltà a visualizzare bene le immagini in rapido movimento; il problema va peggiorando man mano che il numero di pixel aumenta.
Per i display ad alta risoluzione, come per esempio quelli usati nei monitor per computer, si usa un sistema a matrice attiva. In questo caso il display LCD contiene una sottile pellicola di transistor (Thin Film Transistor - TFT). Questo dispositivo memorizza lo stato elettrico di ogni pixel del display mentre gli altri pixel vengono aggiornati; questo metodo permette di ottenere immagini molto più luminose e nitide rispetto agli LCD tradizionali.
La durata media dei display LCD può superare le 50.000 ore; questo dato, unitamente alla notevole e costante riduzione del loro prezzo, rende questa tecnologia una valida alternativa ai display a tubo catodico (ormai quasi abbandonata).
Parametri di un pannello LCD
I principali parametri che caratterizzano un display LCD a matrice attiva (TFT) sono contrasto, luminosità (o più propriamente luminanza), linearità dei grigi, angolo di visuale, tempo di risposta e resa cromatica. Inoltre per la televisione, pur non facendo parte del pannello vero e proprio, anche l'elettronica di "scalatura" dell'immagine è fondamentale nel determinare la qualità video.
Contrasto e retroilluminazione
Il rapporto fra la luminosità del bianco e la luminosità del nero è definito contrasto. Si tratta quindi di un parametro tipico del pannello, dipendente dalla capacità dei cristalli liquidi di bloccare la luce proveniente dalla retroilluminazione; viceversa, il cosiddetto "contrasto dinamico" non dipende solamente dai cristalli liquidi ma anche dalla retroilluminazione: è infatti il rapporto fra il bianco, misurato con la retroilluminazione alla massima intensità, e il nero, misurato con la retroilluminazione al valore minimo. I valori di contrasto dinamico sono pertanto formalmente molto più alti di quello nativo dei pannelli, mediamente di un rapporto di almeno 1 a 5.
Generalmente i migliori pannelli LCD vantano contrasti nativi dello stesso ordine di grandezza di quelli dinamici dichiarati nei pannelli più vecchi; in genere comunque i contrasti dinamici sono dell'ordine di grandezza delle diverse migliaia a 1, se non delle decine di migliaia a 1, mentre quelli statici solitamente partono da attorno ai 1000:1 a salire. Una immagine che abbia sia parti chiare che scure mette tuttavia in difficoltà un pannello che vanta alti contrasti dinamici in quanto la luminosità della retroilluminazione è unica, per cui il reale contrasto sarà quello nativo dei cristalli liquidi e non quello dinamico.
Si è nel tempo sviluppata la tecnologia retroilluminazione a LED, distinguendo due diversi metodi per il loro posizionamento, sensibilmente diversi tra loro: la retroilluminazione "laterale", costituita da LED posti sul bordo del display e controllabili "in blocco", e quella "a tappeto luminoso" (che può avere una risoluzione pari o anche molto inferiore alla risoluzione del pannello LCD), una tecnica più recente, la quale per mezzo di un microprocessore dedicato, permette il cosiddetto "local dimming", una funzione che agisce dinamicamente sulle varie porzioni di retroilluminazione, ottimizzandole in base ad ogni singolo fotogramma in riproduzione, migliorandone pertanto sensibilmente il contrasto. Nel tempo, la corretta dizione "schermo LCD a retroilluminazione LED" viene spesso abbreviata in "schermo a LED", anche se impropria (i LED presenti hanno il "solo" scopo di retro illuminare).
Forti contrasti sono tuttavia necessari solo per l'uso in piena luce del pannello LCD; si rileva infatti che il contrasto realmente percepito dipende anche dall'illuminazione dell'ambiente e dalla finitura superficiale dello schermo (lucido/riflettente od opaco/diffondente). Poiché in ogni caso lo schermo non è un corpo nero e riflette una parte della luce che lo colpisce, la luminanza del nero viene alterata se questi viene colpito da una forte luce ambiente. Viceversa, ad esempio per la visione di un film in un ambiente scuro (il tipico soggiorno alla sera), contrasti elevati sono in genere fastidiosi in quanto le parti di immagine più luminose hanno un effetto abbagliante, riducendo la percezione dei dettagli nelle parti più scure e aumentando l'effetto scia percepito.
Tempi di risposta bianco-nero, grigio-grigio, tempo percepito ed effetto scia
Il meccanismo di funzionamento di un display a cristalli liquidi si basa sul fatto che, orientandosi in modo opportuno, i cristalli liquidi possono consentire o meno il passaggio della luce proveniente dalla retroilluminazione del pannello. Il tempo di risposta totale è in genere definito come il tempo necessario ai cristalli liquidi per passare da uno stato "tutto chiuso" (nero) ad uno "tutto aperto" (bianco), per poi tornare al "tutto chiuso" (BTB). Tuttavia alcuni produttori misurano solo il passaggio dal bianco al nero (o viceversa) a cui conseguono quindi valori di tempo più bassi. Inoltre, non è detto che il passaggio dal bianco al nero abbia la stessa durata del passaggio dal nero al bianco. In realtà questo valore spesso vantato dai produttori non è significativo, in quanto è raro che in un filmato si passi dal bianco al nero (o viceversa); ben più frequente è che si passi da una sfumatura di grigio ad un'altra e i tempi per le transizioni grigio-grigio (G2G o GTG) sono generalmente più lunghi di quelle bianco-nero.[3]
In seguito si è in parte corretta questa lentezza sul grigio-grigio mediante tecniche di overdrive (sovratensione) dei pannelli a cristalli liquidi, al costo però di un aumento del "rumore" delle immagini e/o talvolta, specie sui pannelli più vecchi, di una riduzione dei colori riproducibili (p.e. 6 bit anziché 8, simulati poi attraverso tecniche di dithering).
Il cosiddetto "effetto scia" che spesso viene attribuito ai pannelli LCD è solo in parte riferibile al tempo di risposta dei cristalli liquidi; in parte è anche da imputarsi al fenomeno phi, cioè dipende dalla fisiologia dell'occhio umano. Infatti, la percezione dell'effetto scia è anche legata al fatto che i pannelli LCD mantengono l'immagine fra un frame e l'altro e sono retroilluminati in continuo, a differenza di un tradizionale tubo a raggi catodici in cui l'immagine è "ricostruita" alla frequenza di refresh dello schermo (50 o 100 Hz la TV; da 60 fino a 120 Hz un monitor per computer). In altre parole, mentre i fosfori di un CRT tendono da soli a "spegnersi" subito dopo il passaggio del pennello di elettroni, in un LCD-TFT (come in tutti i display a matrice attiva, plasma o LED) i pixel conservano la luminosità "fino a nuovo ordine", cioè fino al successivo fotogramma del filmato. Questo è un grande vantaggio nei monitor per computer poiché l'immagine è stabile e non sfarfalla, ma diventa un problema con immagini in movimento come nelle TV per i film: ciascun fotogramma risulta infatti in parte sovrapposto al precedente a causa sia della lentezza dei cristalli liquidi a cambiare stato, sia alla persistenza della visione sulla retina. Di fatto anche con un teorico LCD con tempo di risposta istantaneo sarebbe sempre presente un certo effetto scia.
Per compensare l'effetto scia che si genera con il ritardo di risposta, si possono utilizzare varie soluzioni. Una di queste prende la denominazione di "motion blur reduction", ideata da LG, che agisce sullo sfarfallio della retroilluminazione, andandolo ad accentuare e adattare per ridurre l'effetto fantasma sulle immagini in rapido movimento.
Tali soluzioni sono spesso accomunate (anche impropriamente) da diciture tipo 100 Hz, anche se non hanno sempre a che fare con i 100 Hz dei CRT e anzi talune cercano di imitare il funzionamento di un classico CRT a 50 Hz. Tale effetto viene ottenuto mediante l'intercalamento di quadri completamente neri (o con luminosità ridotta), quadri intermedi interpolati calcolati dall'elettronica del display oppure mediante spegnimenti sequenziali brevissimi delle lampade di retroilluminazione (realizzando una sorta di scansione luminosa dello schermo); alcune di queste soluzioni potrebbero determinare un aumento della percezione di sfarfallamento del display LCD.
Luminosità e resa cromatica della retroilluminazione
I display LCD sono caratterizzati da una luminosità molto elevata, dell'ordine delle centinaia di candele al metroquadro (cd/m²): questa elevata luminosità li rende ben visibili anche con una forte luce ambientale ma può risultare fastidiosa per la visione in un ambiente buio o semi-buio. Il motivo per cui i costruttori adottano retroilluminazioni così forti può essere spiegato con l'effetto che tale luminosità ha sul "contrasto dinamico". Esso è, a parità di pannello a cristalli liquidi, tanto più elevato quanto maggiore è il rapporto fra il bianco, misurato con la massima retroilluminazione, ed il nero, misurato con la minima retroilluminazione; quindi l'aumento della luminosità massima è il modo più semplice per pubblicizzare valori di contrasto dinamico molto elevati. Inoltre, una forte luminosità tende ad aumentare la persistenza della visione sulla retina incrementando il tempo di risposta e l'effetto scia percepiti.
Discorso a parte merita la resa cromatica del pannello, ovvero la capacità di riprodurre una vasta gamma di colori. Premesso che nessun genere di display di alcun tipo è in grado di riprodurre tutti i colori percepibili dall'occhio umano, la resa cromatica dipende in buona parte dalla retroilluminazione, e nella fattispecie dalla monocromaticità dei colori RGB (rosso verde e blu) dei subpixel. Con le lampade di retroilluminazione a scarica si ottengono risultati discreti ma l'uso di LED permette di migliorare ulteriormente il livello di monocromaticità dei tre colori fondamentali, con il conseguente effetto di aumentare la superficie del gamut, cioè del triangolo avente per vertici i tre colori RGB e che rappresenta le sfumature di colore riproducibili dal display.
Angolo di visuale in relazione a luminosità e contrasto
L'angolo di visuale è un altro parametro importante di cui esistono diverse modalità di misurazione. Gli angoli di visuale pubblicizzati si riferiscono in genere all'angolo massimo sotto cui si può guardare lo schermo LCD mantenendo una luminosità e un contrasto "accettabili"; il grado di "accettabilità" può essere liberamente stabilito dai produttori, per cui è possibile che i dati forniti da produttori diversi abbiano significati diversi. Ad esempio, il limite è in genere individuato da un contrasto di 10:1, per cui si ottiene un certo angolo di visuale; se si considera invece 5:1, l'angolo di visuale aumenterà, pur riferendosi allo stesso identico pannello cristalli liquidi con le stesse identiche caratteristiche.
Inoltre i valori dati dai produttori riguardano l'angolo estremo (in verticale ed in orizzontale) su cui si ha un decadimento del contrasto ai valori sopra citati, ma tale numero non specifica come questo valore decade al variare dell'angolo, a quali valori si hanno con angoli non orizzontali/verticali ma diagonali, né alle differenze fra angolo verso l'alto o verso il basso (su alcuni pannelli fortissime); indicazioni di questo genere possono invece essere ricavate da analisi polari (vedi immagine).
Imperfezione della scala dei grigi
Nel sistema RGB adottato da computer, DVD, DVB, alta definizione, ecc., il grigio[3] può assumere 256 livelli pari alle combinazioni possibili con 8 bit. Un valore 0 corrisponde al nero mentre 255 corrisponde al bianco. Quindi se un display ha una luminosità massima, ad esempio, di 400 cd/m², tale livello di luminosità corrisponderà al bianco, cioè ad un valore di 255 sulla scala dei grigi. Molto meno esplicito è il fatto che al valore di 128 (metà scala) non corrisponda il valore di 200 cd/m²; il valore reale di luminosità è generalmente molto più basso e il parametro che correla il segnale d'ingresso all'emissione luminosa è denominato correzione di gamma. In altri termini, la scala di grigi non è lineare ma segue un andamento esponenziale, con dilatazioni e compressioni; ad esempio il nero (valore 0) non è completamente buio, inoltre al crescere dei valori RGB l'andamento della luminosità cresce meno marcatamente di quanto in teoria ci si potrebbe aspettare, per poi aumentare notevolmente verso il fondo della scala. È quindi possibile che alcuni valori di grigio vicini non siano in pratica distinguibili fra loro, specie agli estremi della scala (basse ed alte luci); va altresì notato che la variazione di luminosità e contrasto in genere non è lineare con l'angolo di osservazione.
Alcuni tipi di pannelli (le famiglie *VA) presentano una miglior resa e distinzione delle diverse tonalità di grigio, in particolare sulle basse luci, se guardati in posizione leggermente angolata piuttosto che centralmente.
Pixel bruciati
Gli LCD, anche nuovi, possono presentare dei pixel bruciati, cioè impossibili da controllare a causa di una difettosità al film di transistor tipico delle matrici TFT. In alcuni tipi di pannelli lo stato acceso del pixel corrisponde al bianco, in altri corrisponde al nero (cioè nero=acceso, bianco=spento), ne consegue che un guasto potrà risultare in un pixel (o più probabilmente un subpixel R, G o B) perennemente acceso oppure perennemente spento a seconda del tipo di pannello LCD.
Le principali famiglie di pannelli LCD di tipo TFT sono:
TN - twisted nematic
TT - transflective (transflettiva) è presente una lamina transflettiva tra la retroilluminazione e i cristalli liquidi, in modo da sfruttare anche l'illuminazione ambientale per la luminosità del display[4], esistono tante tecnologie proprietarie che utilizzano tale soluzione, quali BE+ SolarbON, Boe Hydis Viewiz, Motion Computing View Anywhere, LG Display Shine-Out, NEC Displays ST-NLT, DEMCO CSI SOLARBON, Pixel Qi 3Qi, Panasonic CircuLumin, Getac QuadraClear, Dell DirectVue o DirectView, Motorola Mobility AnyLight
VA - vertical alignment
MVA (multi-domain vertical alignment)
P-MVA / S-MVA
A-MVA
PVA (patterned vertical alignment)
S-PVA
SVA (tipo di pannello VA sviluppato da Samsung[5] da non confondere con la sigla SVA che sta per "Standard Viewing Angles" usata da alcuni OEM per indicare pannelli TN di fascia economica)
LTPS - polisilicio a bassa temperatura, viene realizzato tramite laser e necessita di meno componenti per la realizzazione della matrice LED e delle sue connessioni.[6]
Nel mondo dei monitor LCD per computer (sia desktop che notebook) le tipologie più diffuse sono il TN e l'IPS con reciproci vantaggi e svantaggi[7].
^ Joseph A. Castellano, Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry, San Jose, World Scientific Publishing Co. Pte. Ltd., 2005, ISBN981-238-956-3.
^abIn relazione a ciascun colore RGB si parla di bianco, grigio e nero, cioè rispettivamente da "massimo rosso (verde o blu)" a "nessun rosso (verde o blu)" passando per le sfumature intermedie.
Speciale display LCD (JPG), in MCmicrocomputer, n. 210, Roma, Pluricom, ottobre 2000, pp. 94-111, ISSN 1123-2714 (WC · ACNP). All'epoca gli schermi TFT per computer fissi erano in crescita, ma non avevano ancora rimpiazzato quelli CRT.
Bintang Takhta Italia Ordo Takhta Italia, Italia: Ordine della Corona d'Italiacode: it is deprecated , dibuat sebagai ordo nasional pada 1868 oleh Raja Vittorio Emanuele II, untuk memperingati penyatuan Italia pada 1861. Penghargaan tersebut diberikan dalam lima peringkat untuk jasa sipil dan militer. Referensi Wikimedia Commons memiliki media mengenai Order of the Crown of Italy. Ordini Cavallereschi del Regno d'ItaliaDiarsipkan 2006-05-07 di Wayback Machine. Corpo della Nobiltà Italiana
Questa voce sull'argomento centri abitati dell'Ohio è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Parmacity(EN) Parma, Ohio Parma – VedutaMuseo-Fattoria Stearns LocalizzazioneStato Stati Uniti Stato federato Ohio ConteaCuyahoga AmministrazioneSindacoTimothy J. DeGeeter (D) TerritorioCoordinate41°23′31″N 81°43′43″W / 41.391944°N 81.728611°W41.391944; -81.7286...
Cricket terminology NSW Breakers' Nicola Carey is bowled by ACT Meteors' Marizanne Kapp (not pictured). Note the ball, and the flying bails, one of which has broken into two pieces. In cricket, a dismissal occurs when a batter's innings is brought to an end by the opposing team. Other terms used are the batter being out, the batting side losing a wicket, and the fielding side taking a wicket. The ball becomes dead (meaning that no further runs can be scored off that delivery), and the dismiss...
2020 incident in Missouri, United States St. Louis gun-toting incidentPart of the George Floyd protests in Missouri, protests against Lyda Krewson, and the gun rights movement in the United StatesMark and Patricia McCloskey standing outside of their St. Louis home armed with guns on June 28, 2020DateJune 28, 2020 (2020-06-28)LocationSt. Louis, Missouri, U.S.Caused byProtesters entering a private community On June 28, 2020, during the George Floyd protests in St. Louis, Missouri...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
Pour les articles homonymes, voir Kony. Sur une barrière à Washington, affiches de la campagne de presse Kony 2012. Kony 2012 est une campagne de presse organisée par l'entreprise américaine Invisible Children en 2012. Le but déclaré est de mettre en lumière les crimes d'un chef de la rébellion en Ouganda, Joseph Kony, afin de provoquer son arrestation. Mais les intentions réelles sont discutables, sur fond de polémique sur l'accès aux ressources pétrolières ougandaises. Le film...
For related races, see 1978 United States gubernatorial elections. 1978 Arizona gubernatorial election ← 1974 November 7, 1978 1982 → Nominee Bruce Babbitt Evan Mecham Party Democratic Republican Popular vote 282,605 241,093 Percentage 52.5% 44.8% County resultsBabbitt: 50–60% 60–70% Mecham: 40–50% 50–60% Governor before election Br...
American politician Andrew LangMember of the Minnesota Senatefrom the 17th districtIncumbentAssumed office January 3, 2017Preceded byLyle Koenen Personal detailsBorn1979 (age 44–45)Political partyRepublicanSpouseSusanChildren2ResidenceOliviaAlma materRidgewater CollegeSt. Cloud State UniversityOccupationHelicopter pilot Andrew R. Lang is an American politician and Republican member of the Minnesota Senate. He represents District 17, which includes portions of Chippewa, Kandiyoh...
Peter Aquino AdujaFoto keluarga Anggota Dewan Perwakilan TeritorialMasa jabatan1954 – 1956[1]Hakim Dewan DistrikMasa jabatan1960 – 1962[2]Anggota Dewan Perwakilan Negara Bagian, Distrik ke-23[3]Masa jabatan1966 – 1974[2] Informasi pribadiLahir(1920-10-19)19 Oktober 1920[4]Salindig, Vigon, Ilocos Sur, Luzon, Filipina[5]Meninggal19 Februari 2007(2007-02-19) (umur 86)[4]Las Vegas, Nevada[2]Makam...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Culture of New Zealand – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this message) Part of a series on theCulture of New ZealandKiwiana History Timeline Independence Colonial Pākehā settlers Pākehā Māori Domini...
Come leggere il tassoboxMolluschiDiverse specie di molluschi: Helix pomatia, Octopus vulgaris, Spisula solidissima, Tonicella lineataClassificazione scientificaDominioEukaryota RegnoAnimalia SottoregnoEumetazoa SuperphylumProtostomia (clado)Lophotrochozoa PhylumMolluscaCuvier, 1797 Subphyla Aculifera Conchifera I molluschi (Mollusca Cuvier, 1797) costituiscono il secondo phylum del regno animale per numero di specie (il primo phylum è costituito dagli artropodi), con 85 844 specie note....
Chemical element nomenclature in East Asia Part of a series on thePeriodic table Periodic table forms 18-column 32-column Alternative and extended forms Periodic table history D. Mendeleev 1871 table 1869 predictions Discovery of elements Naming and etymology for people for places controversies (in East Asia) Systematic element names Sets of elements By periodic table structure Groups (1–18) 1 (alkali metals) 2 (alkaline earth metals) 3 4 5 6 7 8 9 10 11 12 13 14 15 (pnictoge...
Area of philosophy and political science Feminist political theory is an area of philosophy that focuses on understanding and critiquing the way political philosophy is usually construed and on articulating how political theory might be reconstructed in a way that advances feminist concerns.[1] Feminist political theory combines aspects of both feminist theory and political theory in order to take a feminist approach to traditional questions within political philosophy.[2] The...
Vyšėjšaja Liha 2002 Competizione Vyšėjšaja Liha Sport Calcio Edizione 12ª Organizzatore BFF Date dal 12 aprile 2002al 3 novembre 2002 Luogo Bielorussia Partecipanti 14 Formula Girone all'italiana Risultati Vincitore BATĖ Borisov(2º titolo) Secondo Nëman Retrocessioni Ljakamatyŭ-96 Vicebsk Statistiche Miglior marcatore Valeryj Strypejkis (18) Incontri disputati 182 Gol segnati 513 (2,82 per incontro) Cronologia della competizione 2001 2003 Manuale La Vyšėj...
American mathematician and billionaire (1938–2024) For other people named James Simons, see James Simons (disambiguation). James SimonsSimons in 2007Born(1938-04-25)April 25, 1938Cambridge, Massachusetts, U.S.DiedMay 10, 2024(2024-05-10) (aged 86)New York City, U.S.EducationMassachusetts Institute of Technology (BS)University of California, Berkeley (MS, PhD)Occupation(s)Hedge fund manager, investor, mathematician, philanthropistKnown forFounding and managing Renaissance Technolog...