Detenzione
|
Read other articles:
Ebbsfleet UnitedGravesend and Northfleet F.C. logoNama lengkapEbbsfleet United Football ClubJulukanThe Fleet, The RedsBerdiri1946; 78 tahun lalu (1946)(as Gravesend & Northfleet)StadionStonebridge Road, Northfleet(Kapasitas: 4,769 (2,179 seats))PemilikKEH Sports LtdKetuaDr Abdulla Al-HumaidiManagerKevin WatsonSitus webSitus web resmi klub Kostum kandang Kostum tandang Musim ini Ebbsfleet United Football Club adalah klub sepak bola Inggris yang berbasis di Northfleet, Kent, yang ...
العلاقات الهندية الكورية الجنوبية الهند كوريا الجنوبية الهند كوريا الجنوبية تعديل مصدري - تعديل العلاقات الهندية الكورية الجنوبية هي العلاقات الثنائية التي تجمع بين الهند وكوريا الجنوبية.[1][2][3][4][5] يعود تاريخ العلاقات الهندية الكور�...
College basketball team Chicago Maroons men's basketballUniversityUniversity of ChicagoHead coachMike McGrath (17th season)ConferenceUniversity Athletic Association (UAA)ArenaRatner Athletics Center (Capacity: 1,658)NicknameMaroonsColorsMaroon and white[1] Pre-tournament Premo-Porretta champions1909Pre-tournament Helms champions1907, 1908, 1909NCAA tournament appearancesDivision III: 1997, 1998, 2000, 2001, 2007, 2008Conference regular season championsBig Te...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: TI InterActive! – news · newspapers · books · scholar · JSTOR (May 2016) (Learn how and when to remove this template message) TI InterActive!A screenshot of TI InterActive! in Windows XP.Developer(s)Texas InstrumentsStable release1.3.0.9 / July 6, 2004;...
У этого термина существуют и другие значения, см. Церера (значения). Церера Статуя Цереры Мифология древнеримская мифология Сфера влияния сельское хозяйство, зерно, фертильность и материнство[d] Латинское написание Ceres Пол женский Отец Сатурн Мать Опа Дети Л...
Airport in Mrčevac, MontenegroTivat AirportAerodrom TivatАеродром ТиватIATA: TIVICAO: LYTVSummaryAirport typePublicOperatorAirports of MontenegroServesTivatLocationMrčevac, MontenegroElevation AMSL20 ft / 6 mCoordinates42°24′17″N 18°43′24″E / 42.40472°N 18.72333°E / 42.40472; 18.72333Websitemontenegroairports.comMapTIVLocation of airport in MontenegroRunways Direction Length Surface ft m 14/32 8,202 2,500 Asphalt Statistics (20...
2019–2020 political party in South Korea Not to be confused with New Conservative Party for Reform. New Conservative Party 새로운보수당LeaderYoo Seong-minFoundedSeptember 30, 2019 (2019-09-30) (as Emergency Action for Change and Innovation)December 12, 2019 (2019-12-12) (as New Conservative Party)DissolvedFebruary 17, 2020 (2020-02-17)Split fromBareunmirae PartyMerged intoUnited Future PartyIdeologyConservatism (South Korean)Polit...
Henk RogersLahir24 Desember 1953 (umur 70)Amsterdam, BelandaPekerjaanPerancang video game, pengusahaSitus webhenkrogers.com Henk Brouwer Rogers (lahir 24 Desember 1953) adalah desainer video game dan pengusaha asal Belanda-Amerika yang merupakan keturunan Indonesia.[1][2] Ia dikenal karena memproduksi video game role-playing besar pertama di Jepang, The Black Onyx. Rogers juga mengamankan lisensi untuk mendistribusikan video game teka-teki Rusia, Tetris di konsol video g...
7,65 x 53 mm Mauser 7,65 × 53 mm Argentina Tipe Senapan Negara asal Kekaisaran Jerman Sejarah penggunaan Operasional 1889-1970-an Digunakan oleh Lihat Penggunaan Perang Perang Dunia IPerang ChacoPerang Ekuador-PeruPerang Dunia II Sejarah produksi Perancang Paul Mauser Varian 7,65 × 53 mmR (berbingkai) Spesifikasi Jenis selongsong tanpa bingkai, berleher botol Diameter proyektil 7,94 Diameter leher 8,78 Diameter bahu 10,90 Diameter dasar 12,01 Di...
County in Indiana, United States Huntington County redirects here. Not to be confused with Huntingdon County, Pennsylvania. County in IndianaHuntington CountyCountyHuntington County Courthouse in HuntingtonLocation within the U.S. state of IndianaIndiana's location within the U.S.Coordinates: 40°50′N 85°29′W / 40.83°N 85.49°W / 40.83; -85.49Country United StatesState IndianaFoundedFebruary 2, 1832 (authorized)May 5, 1834 (organized)Named forSamuel Hun...
Se ha sugerido que esta página sea renombrada como «Mar de Hoces». Motivo: Término más utilizado en España por ser el navegante español Francisco de Hoces quien lo habría descubierto y el primero en atravesarlo en 1526 durante la expedición a las Molucas de García Jofre de Loaísa (ver discusión) Pasaje de Drake Mapa del paso o mar mostrando los puntos fronterizos A, B, C, D, E y F según lo acordado en el Tratado de Paz y Amistad entre Argentina y Chile en 1984Ubicación geográf...
Questa voce o sezione sull'argomento società di pallacanestro non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Houston RocketsPallacanestro Segni distintiviUniformi di gara Casa Trasferta Terza divisa Colori socialiRosso, argento, nero, bianco[1][2] ...
瑞典王國Konungariket Sverige[註 1] 国旗 大國徽 格言:För Sverige – i tiden(王室)a“为了瑞典,與時俱進”[1]国歌:Du gamla, Du friab《你古老,你自由》皇室颂歌:Kungssången《國王之歌》瑞典的位置(深綠色)– 歐洲(綠色及深灰色)– 歐洲聯盟(綠色) — [圖例放大]首都暨最大城市斯德哥尔摩官方语言瑞典語c族群無官方數據d政府單一制議會...
Politics of Egypt Member State of the Union for the Mediterranean Member State of the African Union Member State of the Arab League Constitution (history) Government President (list) Abdel Fattah el-Sisi Prime Minister (list) Mostafa Madbouly Cabinet Mostafa Madbouly's ministry Legislature Parliament House of Representatives Speaker (list) Hanafy El Gebaly Senate Judiciary Supreme Constitutional Court Chancellor Saeed Marie Administrative divisions Governorates Subdivisions Elections Recent ...
Charles-Ferdinand de Bourbon-Siciles Le prince de Capoue.Titre Prince héritier des Deux-Siciles 8 novembre 1830 – 16 janvier 1836(5 ans, 2 mois et 8 jours) Données clés Prédécesseur Ferdinand de Bourbon-Siciles Successeur François de Bourbon-Siciles Biographie Titulature Prince de Capoue Dynastie Maison de Bourbon-Siciles Maison de Bourbon-Deux Siciles Naissance 10 novembre 1811Palerme Décès 22 avril 1860 (à 48 ans)Turin Père François Ier des Deux-Siciles Mè...
Coppa Italia 2007-2008 Competizione Coppa Italia Sport hockey su pista Edizione 39ª Organizzatore FIPHLega Nazionale Hockey Date dal 29 settembreal 27 novembre 2007 Partecipanti 15 Formula Due fasi a gironi e finale a/r Sito web FISR Risultati Vincitore Follonica(6º titolo) Finalista Amatori Lodi Statistiche Incontri disputati 36 Gol segnati 198 (5,5 per incontro) Cronologia della competizione 2006-2007 2008-2009 Manuale La Coppa Italia 2007-2008 è stata la 39ª e...
Measure of the asymmetry of random variables For the planarity measure in graph theory, see Graph skewness. Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined. For a unimodal distribution (a distribution with a single peak), ...
Metropolitan borough of England St PancrasSt Pancras Town HallSt Pancras within the County of LondonPopulation • 180131,779 • 1961124,855 History • Abolished1965 • Succeeded byLondon Borough of Camden StatusCivil parish (1937-1965)Metropolitan borough (1900-1965)GovernmentSt Pancras VestrySt Pancras Borough Council (1900–1965) • TypeVestry (16th century–1855)Incorporated vestry (1855–1900)Metropolitan borough council (1900...
Провинция Гвадалахара на карте Испании Провинция Гвадалахара (исп. Provincia de Guadalajara) входит в автономное сообщество Кастилия-Ла-Манча и включает в себя 288 муниципалитетов. Ранее провинции в Испании имели большое значение и значительные полномочия, однако после введен�...
Hyperboloïde de révolution à une nappe En mathématiques, la géométrie dans l'espace consiste à étudier les objets définis dans la géométrie plane dans un espace à trois dimensions et à y ajouter des objets qui ne sont pas contenus dans des plans : surfaces (plans et surfaces courbes) et volumes fermés. Il s'agit donc de géométrie dans un espace à trois dimensions. Géométrie euclidienne dans l'espace On peut adopter, dans l'espace à trois dimensions, les mêmes axiomes...