Sianida organik umumnya disebut nitril; gugus CN terhubung melalui ikatan kovalen dengan gugus bermuatan karbon, seperti metil (-CH3) pada metil sianida (asetonitril). Karena tidak melepas ion sianida, maka nitril umumnya lebih tidak beracun, atau seperti pada polimer tidak larut seperti serat akrilik, maka sama sekali tidak beracun kecuali jika dibakar.[5]
Asam sianida (HCN) adalah senyawa berbentuk cairan yang mudah menguap, biasa digunakan dalam pembuatan asetonitril yang kemudian digunakan untuk produksi serat akrilik, karet sintetis, dan plastik.[6] Sianida juga digunakan dalam berbagai proses kimia, seperti fumigasi, pengerasan besi dan baja, elektroplating, dan pemurnian bijih. Di alam, bahan - bahan yang mengandung sianida terdapat dalam beberapa biji buah, seperti lubang ceri dan biji apel.
Nomenklatur dan etimologi
Dalam nomenklatur IUPAC, senyawa organik yang memiliki gugus fungsi C≡N- disebut nitril. Sehingga nitril adalah senyawa organik.[7][8] Contoh nitril adalah CH3CN, asetonitril (juga dikenal sebagai metil sianida). Nitril biasanya tidak melepaskan ion sianida. Gugus fungsional dimana hidroksil dan sianida terikat pada karbon yang sama disebut sianohidrin. Tidak seperti nitril, sianohidridin memang melepaskan hidrogen sianida. Dalam kimia anorganik, garam yang mengandung ion C≡N− disebut sebagai sianida.
Kata ini berasal dari bahasa Yunani kyanos, yang berarti biru tua, sebagai hasil pertama kali diperoleh dari pemanasan pigmen yang dikenal sebagai biru Prusia.
Sianida dapat diproduksi oleh bakteri, jamur, dan alga tertentu dan ditemukan di sejumlah tanaman. Sianida ditemukan dalam jumlah besar pada biji buah tertentu, mis. Almond pahit, aprikot, apel, dan buah persik.[11] Pada tanaman, sianida biasanya terikat dengan molekul gula dalam bentuk glikosida sianogenik, sebagai pencegah tanaman terhadap herbivora (lihat Simbiosis mutualisme). Akar singkong (ubi kayu), dan makanan penting seperti kentang yang ditanam di negara tropis, juga mengandung glikosida sianogen.[12][13]
Bambu Madagaskar (Cathariostachys madagascariensis) menghasilkan sianida sebagai pencegah penebangan. Sebagai tanggapan, lemur bambu emas, pemakan bambu, telah mengembangkan sifat toleransi yang tinggi terhadap sianida.
Ruang antariksa
Radikal sianida ·CN telah ditemukan di ruang antariksa.[14] Radikal sianida (disebut sianogen) digunakan untuk mengukur suhu awan gas antariksa.[15]
Pirolisis dan produk pembakaran
Hidrogen sianida dihasilkan oleh pembakaran atau mem-pirolisis bahan-bahan tertentu dalam kondisi kekurangan oksigen. Misalnya, dapat dideteksi pada knalpot mesin pembakaran internal dan asap tembakau. Plastik tertentu, terutama yang berasal dari akrilonitril, melepas hidrogen sianida saat dipanaskan atau dibakar.[5]
Pada kimia koordinasi
Anion sianida adalah ligan untuk banyak logam transisi.[16] Afinitas tinggi logam untuk anion ini dapat dikaitkan dengan muatan negatif, kekompakan, dan kemampuan untuk ikut serta dalam ikatan π. Ikatan kompleks terkenal meliputi:
heksasianida [M(CN)6]3− (M=Ti, V, Cr, Mn, Fe, Co), yang berbentuk oktahedral.
tetrasianida, [M(CN)4]2− (M=Ni, Pd, Pt), yang merupakan bangun geometri bujur sangkar;
diasida [M(CN)2]- (M=Cu, Ag, Au), yang memiliki bangun geometri linear.
Di antara senyawa koordinasi sianida, yang paling penting adalah senyawa kalium ferrosianida yang terkoordinasi secara oktahedral, serta pigmen Biru Prusia, yang keduanya pada dasarnya tidak beracun karena ikatan sianida yang erat dengan atom besi pusat.[17] Biru Prusia pertama kali secara tidak sengaja dibuat sekitar tahun 1706, dengan memanaskan molekul yang mengandung zat besi, karbon, dan nitrogen. Kemudian sianida berbentuk lain mulai dibuat kemudian (dan dinamai menurut namanya). Di antara banyak kegunaannya, biru Prusia memberikan warna biru dalam blueprint, proses pembiruan, dan cyanotypes.
Karena nukleofilisitas anion sianida yang tinggi, gugus siano mudah dikategorikan ke dalam molekul organik dengan menempatkan gugus halida (mis. Klorida pada metil klorida). Secara umum, sianida organik disebut nitril. Dengan demikian, CH3CN dapat disebut metil sianida tetapi lebih sering disebut sebagai asetonitril. Dalam sintesis organik, sianida adalah sintesis C-1; yaitu dapat digunakan untuk memperpanjang rantai karbon satu per satu, sambil mempertahankan kemampuan untuk kembali difungsikan.[butuh rujukan]
Sebagian besar sianida sangat beracun. Anion sianida adalah inhibitorenzimsitokrom c oksidase (disebut juga aa3) pada kompleks keempat rantai transpor elektron (ditemukan pada membran mitokondria pada sel eukariotik). Sianida akan menempel ke besi dalam protein ini. Ikatan sianida dengan enzim ini akan mencegah transpor elektron dari sitokrom c ke oksigen. Akibatnya, rantai transpor elektron terganggu, artinya sel tidak dapat lagi memproduksi (secara aerobik) ATP untuk energi beraktivitas.[21] Jaringan yang sangat mengandalkan respirasi aerobik, seperti sistem saraf pusat dan jantung, akan sangat terpengaruh.[22]
Senyawa yang paling beracun adalah asam sianida, bentuknya gas pada suhu dan temperatur ruangan, oleh karena itu dapat terhirup. Oleh karena itu, respirator udara dengan sumber oksigen eksternal wajib dipakai ketika bekerja dengan asam sianida. Asam sianida akan dihasilkan ketika sianida labil diasamkan, karena sianida adalah asam lemah. Larutan alkali lebih aman digunakan karena tidak memunculkan gas asam sianid. Asam sianida juga dapat diproduksi pada pembakaran poliuretan; untuk alasan ini, poliuretan tidak disarankan untuk digunakan pada furnitur domestik dan penerbangan. Asam sianida yang terhirup oral dalam skala kecil (dalam bentuk sianida padat atau larutan sianida) pada angka 200 mg, atau sekitar 270 ppm sudah cukup untuk mengakibatkan kematian dalam hitungan menit.[22]
Antidot
Hidroksokobalamin bereaksi dengan sianida membentuk sianokobalamin, yang dapat dibuang secara aman oleh ginjal. Metode ini adalah salah satu metode menguntungkan dalam menghindari pembentukan metemoglobin. Perangkat antidot ini dijual dengan merk Cyanokit dan disetujui oleh FDA tahun 2006.[23]
Antidot lama untuk sianida menggunakan 3 senyawa: butiran amil nitrit (dengan dihirup), natrium nitrit, dan natrium tiosulfat. Tujuan antidot ini adalah menghasilkan besi ferro (Fe3+) dalam jumlah besar untuk bersaing mendapatkan sianida dengan sitokrom a3 (sehingga sianida akan terikat ke antidot daripada ke enzim). Nitritmengoksidasihemoglobin menjadi metemoglobin, yang bersaing dengan sitokrom oksidase untuk mendapatkan ion sianida. Sianmetemoglobin terbentuk dan enzim sitokrom oksidase akan kembali didapat. Mekanisme utama untuk membuang sianida dari tubuh adalah konversi enzimatik menjadi tiosianat dengan enzim rhodanese dalam mitokondria. Tiosianat merupakan senyawa yang relatif tidak beracun dan bisa dibuang ginjal. Untuk mempercepat detoksifikasi, natrium tiosulfat digunakan untuk menyediakan donor sulfur bagi rhodanese untuk memproduksi tiosianat.[24]
Sianida utamanya diproduksi untuk pertambangan emas dan perak: senyawa ini membantu melarutkan logam ini dari bijihnya. Pada proses sianida, bijih grade tinggi dicampur dengan sianida (konsentrasi sekitar 2 kg NaCN per ton); bijih low-grade ditumpuk dan disemprot dengan larutan sianida (konsentrasi sekitar 1 kg NaCN per ton). Logam mulia ini akan membentuk kompleks dengan anion sianida membentuk turunan yang dapat larut, seperti [Au(CN)2]− and [Ag(CN)2]−.[25]
Perak lebih "rendah" daripada emas dan umumnya di alam muncul sebagai sulfida, dalam hal redoks tidak diperlukan (tidak ada O2 diperlukan). Sebaliknya, reaksi perpindahan yang terjadi:
Ag2S + 4 NaCN + H2O → 2 Na[Ag(CN)2] + NaSH + NaOH
Larutan induk yang mengandung ion ini dipisahkan dari padatannya, kemudian dibuang ke kolam limbah. Logam akan diambil kembali dari larutan induk dengan reduksi dengan abu seng atau diadsorpsi dengan karbon aktif. Proses ini dapat menghasilkan masalah kesehatan dan lingkungan. Sejumlah bencana lingkungan muncul akibat kolam limbah yang luber.
Larutan sianida akan terhidrolisa cepat, terutama jika ada cahaya matahari. Senyawa ini dapat membawa logam berat seperti merkuri jika ada. Sianida juga digunakan pada elektroplating, di mana dapat menstabilkan ion logam pada larutan elektrolit sebelum terdeposisi.
Kimia organik industri
Beberapa nitril diproduksi dalam skala besar, contoh adiponitril adalah prekursor nilon. Beberapa senyawa juga dihasilkan dengan menggabungkan asam sianida dengan alkena (hidrosianasi):
RCH=CH2 + HCN → RCH(CN)CH3. Katalis logam dibutuhkan untuk reaksi ini.
Penggunaan Medis
Senyawa sianida, natrium nitroprusside terutama digunakan dalam kimia kesehatan untuk mengukur urine dalam badan ketone khususnya sebagai tindak lanjut untuk pasien diabetes.
Keracunan pada manusia
Keracunan sianida yang disengaja telah muncul pada banyak kejadian sepanjang sejarah.[26]
Yang paling terkenal adalah asam sianida yang dilepas dari pelet Zyklon-B yang digunakan secara meluas pada pembunuhan massal ketika Holokaus, terutama di kamp konsentrasi. Diracun dengan gas asam sianida dalam kamar gas (garam asam sianida dijatuhkan ke asam kuat, seperti asam sulfat) adalah salah satu metode hukuman mati ketika terdakwa kemudian menghirup gas letal.
Aditif makanan
Karena kestabilannya yang tinggi akan kompleksnya dengan besi, ferrosianida (natrium ferrosianida E535, kalium ferrosianida E536, dan kalsium ferrosianida E538[27]) tidak akan terdekomposisi ke level mematikan dalam tubuh manusia dan digunakan dalam industri makanan sebagai, contohnya agen anticaking pada garam dapur.[28]
Referensi
^"cyanide | chemical compound". britannica.com (dalam bahasa bahasa Inggris). Britannica.com. Diakses tanggal 1 Februari 2016.Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
^"CDC | Facts About Cyanide". bt.cdc.gov (dalam bahasa bahasa Inggris). Diarsipkan dari versi asli tanggal 2010-04-15. Diakses tanggal 1 Februari 2016. Cyanide is contained in cigarette smoke and the combustion products of synthetic materials such as plastics. Combustion products are substances given off when things burn. In manufacturing, cyanide is used to make paper, textiles, and plastics.Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
^Sharpe, A. G. Kimia Kompleks Cyano dari Logam Transisi; Academic Press: London, 1976
^Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN978-0-12-352651-9.
^Reissmann, Stefanie; Hochleitner, Elisabeth; Wang, Haofan; Paschos, Athanasios; Lottspeich, Friedrich; Glass, Richard S.; Böck, August (2003). "Taming of a Poison: Biosynthesis of the NiFe-Hydrogenase Cyanide Ligands". Science. 299 (5609): 1067–70. Bibcode:2003Sci...299.1067R. doi:10.1126/science.1080972. PMID12586941.
^Andrussow, Leonid (1927). "Über die schnell verlaufenden katalytischen Prozesse in strömenden Gasen und die Ammoniak-Oxydation (V)". Berichte der deutschen chemischen Gesellschaft (dalam bahasa German). 60 (8): 2005–18. doi:10.1002/cber.19270600857.Parameter |trans_title= yang tidak diketahui akan diabaikan (bantuan)Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
^Andrussow, L. (1935). "Über die katalytische Oxydation von Ammoniak-Methan-Gemischen zu Blausäure". Angewandte Chemie (dalam bahasa German). 48 (37): 593–5. doi:10.1002/ange.19350483702.Parameter |trans_title= yang tidak diketahui akan diabaikan (bantuan)Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
^Nelson, David L.; Cox, Michael M. (2000). Lehniger Principles of Biochemistry (edisi ke-3rd). New York: Worth Publishers. hlm. 668,670–71,676. ISBN1-57259-153-6.