Valós értékű függvény

A valós értékű függvény olyan függvény, amelynek értékkészlete a valós számok halmazának részhalmaza. Vagyis olyan függvény, amely az értelmezési tartományának minden eleméhez egy valós számot rendel.

A valós függvények fontossága az általuk alkotott függvényterekben van.

Általános definíciók

Legyen egy tetszőleges halmaz. Jelölje az összes olyan függvény halmazát, amelyeknek alaphalmaza , képhalmazuk pedig a valós számok halmaza, . Mivel testet alkot, így egy vektortér:

  • – definiálható a vektorösszeadás
  • létezik additív egységelem
  • – definiálható skalárral való szorzás
  • – és definiálható pontonkénti szorzat.

Mivel rendezett halmaz is, így részbenrendezett halmaz, vagyis:

  • .

részbenrendezett gyűrű.

Mérhetőség

A valós Borel-halmazok által alkotott σ-algebrák fontos jelentőséggel bírnak. Ha -nek létezik ilyen σ-algebrája és az függvény olyan, hogy eleme a σ-algebrának, bármely Borel-halmazra, akkor úgynevezett mérhető függvény. A mérhető függvények vektorteret és algebrát is alkotnak, lásd fentebb.


A szócikk egy része még lefordítandó. Segíts te is a fordításban!

Folytonosság

A valós számok topologikus teret és teljes metrikus teret alkotnak. A folytonos valós értékű függvények fontosak a topologikus és a metrikus terek elméletében. A Weierstrass-szélsőértéktétel szerint bármely kompakt téren értelmezett valós folytonos függvény felveszi globális maximumát és minimumát, vagyis léteznek globális szélsőértékei.

Maga a metrikus tér definíciója is egy valós értékű úgynevezett távolságfüggvényen, a metrikán alapul, amely egy folytonos függvény. A kompakt Hausdorff-téren értelmezett folytonos függvények különösen fontosak. A konvergens sorozatok szintén tekinthetőek valós értékű folytonos függvényeknek egy speciális topologikus tér felett.

A folytonos függvények szintén vektorteret és algebrát alkotnak (lásd fentebb), és a mérhető függvények részhalmazát képezik, mivel bármely topologikus térnek van a nyitott (vagy zárt) részhalmazai által generált σ-algebrája.

== Simaság == {{main|Smooth function}} Real numbers are used as the codomain to define smooth functions. A domain of a real smooth function can be the [[real coordinate space]] (which yields a [[real multivariable function]]), a [[topological vector space]],<ref>Different definitions of [[derivative]] exist in general, but for finite [[dimension (vector space)|dimensions]] they result in equivalent definitions of classes of smooth functions.</ref> an [[open subset]] of them, or a [[smooth manifold]]. Spaces of smooth functions also are vector spaces and algebras as explained [[#In general|above]], and are a subclass of [[#Continuous|continuous functions]]. == Appearances in measure theory == A [[measure (mathematics)|measure]] on a set is a [[non-negative]] real-valued functional on a σ-algebra of subsets.<ref>Actually, a measure may have values in {{closed-closed|0, +∞}}: see [[extended real number line]].</ref> [[Lp space|L<sup>''p''</sup> spaces]] on sets with a measure are defined from aforementioned [[#Measurable|real-valued measurable functions]], although they are actually [[Quotient space (topology)|quotient space]]s. More precisely, whereas a function satisfying an appropriate [[integral|summability condition]] defines an element of L<sup>''p''</sup> space, in the opposite direction for any {{math|''f'' ∈ L<sup>''p''</sup>(''X'')}} and {{math|''x'' ∈ ''X''}} which is not an [[atom (measure theory)|atom]], the value {{math|''f''(''x'')}} is [[well-definition|undefined]]. Though, real-valued L<sup>''p''</sup> spaces still have some of the structure explicated [[#In general|above]]. Each of L<sup>''p''</sup> spaces is a vector space and have a partial order, and there exists a pointwise multiplication of "functions" which changes {{mvar|p}}, namely :<math>\sdot: L^{1/\alpha} \times L^{1/\beta} \to L^{1/(\alpha+\beta)},\quad 0 \le \alpha,\beta \le 1,\quad\alpha+\beta \le 1.</math> For example, pointwise product of two L<sup>2</sup> functions belongs to L<sup>1</sup>. == Other appearances == Other contexts where real-valued functions and their special properties are used include [[monotonic function]]s (on [[ordered set]]s), [[convex function]]s (on vector and [[affine space]]s), [[harmonic function|harmonic]] and [[subharmonic function|subharmonic]] functions (on [[Riemannian manifold]]s), [[analytic function]]s (usually of one or more real variables), [[algebraic function]]s (on real [[algebraic variety|algebraic varieties]]), and [[polynomial]]s (of one or more real variables).

Kapcsolódó szócikkek

Jegyzetek

Külső hivatkozások

Real Function Mathworld

Read other articles:

В Википедии есть статьи о других людях с фамилией Малевский. В Википедии есть статьи о других людях с фамилией Малевич. Николай Андреевич Малевский-Малевич Посол России в Японии 1908 — 1916 Предшественник Георгий Петрович Бахметев Преемник Василий Николаевич Крупенский Ро�...

 

 

δ Canis Majoris Lokasi δ Canis Majoris (dilingkari) Data pengamatan Epos J2000      Ekuinoks J2000 Rasi bintang Canis Major Asensio rekta 07h 08m 23.5s Deklinasi -26° 23′ 36″ Magnitudo tampak (V) 1.83 Ciri-ciri Kelas spektrum F8 Ia Indeks warna U−B 0.54 Indeks warna B−V 0.68 Jenis variabel Alpha Cygni AstrometriKecepatan radial (Rv)34 km/sGerak diri (μ) RA: -2.75 mdb/thn Dek.: 3.33 mdb/thn Paralaks (π)1,8...

 

 

American politician For other people named Edwin Johnson, see Edwin Johnson (disambiguation). Ed Johnson26th and 34th Governor of ColoradoIn officeJanuary 11, 1955 – January 8, 1957LieutenantStephen McNicholsPreceded byDaniel I. J. ThorntonSucceeded byStephen McNicholsIn officeJanuary 10, 1933 – January 1, 1937LieutenantRay Herbert TalbotPreceded byBilly AdamsSucceeded byRay Herbert TalbotUnited States Senatorfrom ColoradoIn officeJanuary 3, 1937 – January 3, ...

العلاقات الأرمينية السلوفينية أرمينيا سلوفينيا   أرمينيا   سلوفينيا تعديل مصدري - تعديل   العلاقات الأرمينية السلوفينية هي العلاقات الثنائية التي تجمع بين أرمينيا وسلوفينيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: �...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Banjaragung, Kajoran, Magelang – berita · surat kabar · buku · cendekiawan · JSTOR BanjaragungDesaNegara IndonesiaProvinsiJawa TengahKabupatenMagelangKecamatanKajoranKode pos56163Kode Kemendagri33.0...

 

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Viareggio Calcio. Football Club Esperia ViareggioStagione 2012-2013Sport calcio Squadra Viareggio Allenatore Stefano Cuoghi Presidente Stefano Dinelli Lega Pro Prima Divisione11º posto nel girone B. Coppa Italia Lega ProFinalista Maggiori presenzeCampionato: Mag...

У этого термина существуют и другие значения, см. Петропавловка. СелоПетропавловка 51°00′15″ с. ш. 39°11′55″ в. д.HGЯO Страна  Россия Субъект Федерации Воронежская область Муниципальный район Лискинский Сельское поселение Петропавловское История и география Час...

 

 

Small area of former common land in London, England For other uses of Parsons Green, see Parsons Green (disambiguation). The green at Parsons Green in winter 2004. Parsons Green is a relatively small triangle of former common land in the Parsons Green area of the London Borough of Hammersmith and Fulham.[1] It is named after the rectors of the parish of Fulham whose residence once adjoined this patch of land and subsequently the name was adopted for the district. From the late 17th-ce...

 

 

Schubert at the piano in Schubertiade, drawing by Moritz von Schwind (1868) Lists ofCompositions byFranz Schubert D: 1–1C 2–12 13–37 37A–91 92–126 127–330 331–510 511–598 599–632 633–678 679–708 708A–732 733–767 768–798 799–822 823–862 863–895 896–936 936A–965B 966–992 Anh. I II III By genre Stage works Songs and part-songs Song cycles Symphonies Sonatas, duos and fantasies Solo piano Publications Opus/Deutsch number concordance 19th century complete e...

Historic house in Illinois, United States United States historic placeJames Charnley HouseU.S. National Register of Historic PlacesU.S. National Historic LandmarkChicago Landmark The original symmetrical facade as it appeared in 1892 - the adjacent building was later demolishedShow map of Central ChicagoShow map of IllinoisShow map of the United StatesLocation1365 N. Astor Street, Chicago, IllinoisCoordinates41°54′27.54″N 87°37′39.67″W / 41.9076500°N 87.6276861°W&#...

 

 

Canadian law regulating Canadian business corporations Canada Business Corporations ActParliament of Canada Long title An Act respecting Canadian business corporations CitationRSC 1985, c. C-44Enacted byParliament of CanadaAssented to24 March 1975Commenced15 December 1975 The Canada Business Corporations Act (CBCA; French: Loi canadienne sur les sociétés par actions) is an act of the Parliament of Canada regulating Canadian business corporations. Corporations in Canada may be inco...

 

 

Piercamillo Davigo al festival della comunicazione di Camogli 2015 Piercamillo Davigo (Candia Lomellina, 20 ottobre 1950) è un ex magistrato e saggista italiano, ex presidente della II sezione penale presso la Corte suprema di cassazione ed ex membro togato del Consiglio Superiore della Magistratura (CSM) [1]. Indice 1 Biografia 2 Procedimenti giudiziari 3 Opere 4 Filmografia 5 Note 6 Altri progetti 7 Collegamenti esterni Biografia Dopo essersi laureato in giurisprudenza all'Universi...

تاريخ اليهود واليهودية في أرض بني إسرائيلمعلومات عامةالمنطقة أرض إسرائيل التأثيراتأحد جوانب يهود فرع من تاريخ فلسطينتاريخ يهودي تفرع عنها تاريخ مملكتي إسرائيل ويهوذا القديمتينيهود إسرائيل تعديل - تعديل مصدري - تعديل ويكي بيانات جزء من سلسلة مقالات حولاليهود في المشرق تا...

 

 

Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standar Wikipedia. Mohon tulis paragraf pembuka yang informatif sehingga pembaca dapat memahami maksud dari Hashim Jalilul Alam Aqamaddin dari Brunei. Contoh paragraf pembuka Hashim Jalilul Alam Aqamaddin dari Brunei adalah .... (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Hashim Jalilul Alam Aqamaddin سلطان هاشم جليل العامSultan BruneiBerkuasa29 Mei 1885 – Mei 1906Penobatan29 Mei 1895Penda...

 

 

51°29′41″N 0°10′19″W / 51.49472°N 0.17194°W / 51.49472; -0.17194 Thurloe Square with the Victoria and Albert Museum in the background The Ismaili Centre, to the north of Thurloe Place Thurloe Square is a traditional garden square in South Kensington, London, England. There are private communal gardens in the centre of the square for use by the local residents. The Victoria and Albert Museum is close by to the north across Thurloe Place and Cromwell Gardens...

Мальтоза Общие Систематическоенаименование 4-​О-​α-​D-​глюкопиранозил-​D-​глюкоза, α-​D-​глюкопиранозил-​​(1-​4)​-​α-​D-​глюкопираноза ​(α-​мальтоза)​, α-​D-​глюкопиранозил-​​(1-​4)​-​β-​D-​глюкопираноза &...

 

 

Artikel ini mengenai provinsi Friesland di Belanda. Untuk daerah dengan nama yang sama di Jerman, silakan melihat: Friesland Provincie Friesland (nl)Provinsje Fryslân (fy)Provinsi Friesland Bendera Lambang Map: Provinsi Friesland di Belanda Ibu kota Leeuwarden Komisaris Raja Arno Brok (VVD) Agama (2005) Protestan 30%Katolik Roma 6% Muslim 2% Luas • Darat • Air  3,340 km² (ke-3)2,413 km² Populasi (2023) • Total • Kepadatan 660,000 (ke-8)197/km²...

 

 

Альберт Филозов Дата рождения 25 июня 1937(1937-06-25) Место рождения Свердловск, РСФСР, СССР Дата смерти 11 апреля 2016(2016-04-11) (78 лет) Место смерти Москва, Россия Гражданство  СССР Россия Профессия актёр,театральный педагог Годы активности 1959—2016 Театр Театр имени Станиславско...

This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: This article has been extensively pruned. A lead section would be useful as well as some references. The level of detail across sports is inconsistent. Please help improve this article if you can. (July 2012) (Learn how and when to remove this message) << August 2010 >> Su Mo Tu We Th Fr Sa 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 &#...

 

 

  لمعانٍ أخرى، طالع رويال رامبل (توضيح). رويال رامبل النوع مصارعة حرة صناعة شبكة دبليو دبليو إي بطولة رويال رامبل البلد  الولايات المتحدة لغة العمل اللغة الإنجليزية الإنتاج شركة الإنتاج دبليو دبليو إي بث لأول مرة في 24 يناير 1993 رويال رمبل 1992  [لغات أخرى]‏  رو...