A játékelméletbenNash-egyensúlynak nevezzük a részt vevő játékosok egyéni stratégiáinak olyan stratégiaegyüttesét, amelyre igaz, hogy minden egyes játékos aktuális stratégiája egy parciálisan legjobb választ ad a többi játékos aktuális stratégiájára. Másképpen: amennyiben a többi játékos egyike sem változtat az aktuális stratégiáján, akkor az adott játékosnak sem érdemes változtatnia, mert nem járna jobban a változtatással.
Egy -szereplős - játékot adottnak tekintünk, ha adottak a stratégiahalmazok (), valamint az ezeken értelmezett kifizetésfüggvények ().
Ha létezik stratégiapont, amely mellett minden szereplőre igaz az, hogy
bármely stratégiára, a pontot Nash-egyensúlynak nevezzük.
Egy játéknak lehet Nash-egyensúlya a tiszta stratégiák halmazán, vagy lehet Nash-egyensúlya a kevert stratégiák (azaz amikor bizonyos fix gyakorisággal az egyik, bizonyos fix gyakorisággal pedig egy másik stratégiát játszik a szereplő) halmazán.
Létezése
Nash bebizonyította, hogy ha a kevert stratégiákat is figyelembe vesszük, akkor minden -szereplős játéknak, amelyben a stratégiák száma véges, létezik Nash-egyensúlya.
Egyértelműsége
Bár az egyik legismertebb játék, a fogolydilemma csak egyetlen egyensúlyi ponttal rendelkezik, a legtöbb játéknak több Nash-egyensúlyi pontja is van, így az egyensúly általában nem egyértelmű.
Alkalmazásai
A Nash-egyensúly legfőbb alkalmazási területe a közgazdaságtan, ahol megjelenése számos kérdés tárgyalását forradalmasította. Olyan helyzetek megoldására ad ugyanis eszközt, ahol az egyes gazdasági szereplők döntései befolyásolják mások döntéseit, és ezt tudják is magukról (stratégiai szituációk).
Vegyük például a következő játékot, amelynek angol neve „battle of sexes” (magyarra talán családi vitaként, vagy nemek harcaként fordíthatnánk): Anti és Bea együtt járnak, és szombat esti programjukat tervezik. Anti rockkoncertre szeretne menni, Bea viszont otthon szeretne maradni, hogy tanuljon. Egyikük sem szeretné azonban a másik nélkül tölteni az estét. A játékot az alábbi táblázatban foglalhatjuk össze (a sorokban Anti, az oszlopokban Bea választható stratégiáit tüntettük fel, az első szám Anti, a második szám pedig Bea hasznossága):
Nemek harca
Bea koncertre megy
Bea otthon marad
Anti koncertre megy
3, 2
1, 1
Anti otthon marad
0, 0
2, 3
Ez a játék ismét egy szimmetrikus, nem zérus összegű játék. Ha a hasznosságokat alaposan szemügyre vesszük, láthatjuk, hogy egyik játékosnak sincs olyan stratégiája, amely jobb lenne a másiknál függetlenül attól, hogy mit választ a másik játékos. Ezért egyik stratégia sem dominálja a másikat, így domináns egyensúly sincs.
Mit gondolunk, mi lesz a megoldás? Ha Bea tanulni fog, Antinak is érdemesebb otthon maradnia. Ha viszont Anti koncertre megy, Beának is érdemes elmenni a koncertre. Találtunk tehát egy olyan pontot, amely stabil: egyik játékosnak sem érdemes más stratégiát választania, kilépnie az egyensúlyi pontból (vajon van más ilyen pont is?). Az ilyen egyensúlyt nevezzük Nash-egyensúlynak.