Család Vagyunk

Család Vagyunk
Adatok
ElnökBoris Kollár

Alapítva2015. november 10.

Ideológiafamilizmus
nacionalizmus
szociálkonzervativizmus
jobboldali populizmus
euroszkepticizmus
bevándorlásellenesség
kivándorlásellenesség
Politikai elhelyezkedésszélsőjobboldal[1]
Parlamenti jelenlétSzlovák parlament:
17 / 150
Európai pártIdentitás és Demokrácia Párt
Weboldala

A Család Vagyunk (szlovákul Sme Rodina, SR) egy szlovákiai párt.

Története

A pártot 2015. november 10-én hozta létre Boris Kollár üzletember.[2] A párt 6,6 százalékot kapott a 2016-os szlovákiai parlamenti választáson, és ezzel 11 mandátumot szerzett a szlovák parlamentben.[3]

2020. március 21. óta a párt a Matovič-kormány egyik pártja, jelenleg három miniszteri tárcával rendelkezik.

Választási eredmények

Parlamenti választások

Választás Szavazatok száma Szavazatok aránya Mandátumok száma Mandátumok aránya[4] Parlamenti szerepe
2016-os 172 860 7,33% 11 6,63% ellenzék
2020-as 237 531 8,24% 17 11,33% kormánypárt
2023-as 65 673 2,21% 0 0% nem jutott be

A szavazatok területi megoszlása

Európai parlamenti választások

Választás Szavazatok száma Szavazatok aránya Mandátumok száma Európai parlamenti csoport
2019-es 31 840 3,23% 0

Jegyzetek

  1. Cunningham, Benjamin. „5 takeaways from Slovakia’s election”, Politico , 2016. március 6. 
  2. Businessman Boris Kollár launches his political party – Spectator.sme.sk, 2015. november 12. (angolul)
  3. Post-election: Possible combinations after Slovak election – Spectator.sme.sk, 2016. március 7. (angolul)
  4. A Szlovák Nemzeti Tanács 150 fős.

Read other articles:

Election in New Jersey Main article: 1796 United States presidential election 1796 United States presidential election in New Jersey ← 1792 November 4 - December 7, 1796 1800 →   Nominee John Adams Thomas Pinckney Party Federalist Federalist Home state Massachusetts South Carolina Electoral vote 7 7 Percentage 100.00% – President before election George Washington Independent Elected President John Adams Federalist Elections in New Jersey Federal governme...

 

Tourism to the city Ice skating in Millennium Park is a popular visitor attraction. Tourism in Chicago draws on the city's status as a world-class destination known for its impressive architecture, first-rate museums, brilliant chefs and wide variety of neighborhood attractions.[1] In 2017, Millennium Park saw 25 million visitors, making it the top tourist destination in the Midwest and among the top ten in the United States.[2] Visitor statistics Chicago tourism recorded 55 m...

 

Koin mata uang Lev Lev (Bulgaria: лев) merupakan sebuah mata uang resmi negara Bulgaria sejak tahun 1881. Mata uang ini setiap satuannya terbagi menjadi 100 stotinka. Mata uang ini terbagi menjadi 2, 5, 10, 20, 50, 100 leva. Lihat pula Perekonomian Bulgaria Pranala luar Katalog dan Galeri uang kertas di Bulgaria Currency in Bulgaria Diarsipkan 2008-01-26 di Wayback Machine., from Bulgarian-Guide.com Bulgarian Banknotes Artikel bertopik ekonomi ini adalah sebuah rintisan. Anda dapat membant...

1946 (I) 1951 Élections législatives de 1946 dans la Guinée française le 10 novembre 1946 Type d’élection Élection législative Postes à élire 2 députés modifier - modifier le code - voir Wikidata  Les élections législatives françaises de 1946 se tiennent le 10 novembre. Ce sont les premières élections législatives de la Quatrième république, après l'adoption lors du référendum du 13 octobre d'une nouvelle constitution. Mode de scrutin L'Assemblée nationale ...

 

Group of fictional characters The He-Man and the Masters of the Universe franchise debuted in 1982 with the creation of American company Mattel and the toyline of the same name. This is a list of characters that appear in the toyline, television series He-Man and the Masters of the Universe, The New Adventures of He-Man, He-Man and the Masters of the Universe (2002), Masters of the Universe: Revelation and He-Man and the Masters of the Universe (2021) and the films The Secret of the Sword, He...

 

Commune in Hauts-de-France, FranceSantesCommuneChurch of Saint-Pierre in Santes Coat of armsLocation of Santes SantesShow map of FranceSantesShow map of Hauts-de-FranceCoordinates: 50°35′38″N 2°57′47″E / 50.5939°N 2.9631°E / 50.5939; 2.9631CountryFranceRegionHauts-de-FranceDepartmentNordArrondissementLilleCantonLille-6IntercommunalityMétropole Européenne de LilleGovernment • Mayor (2020–2026) Hiazid Belabbes[1]Area17.57 km2...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Charles Taze Russel Bagian dari seriSaksi-Saksi Yehuwa Ikhtisar Struktur organisasi Badan Pimpinan Watch Tower Bibleand Tract Society Badan usaha Sejarah Gerakan Siswa Alkitab Sengketa kepemimpinan Kelompok-kelompok pecahan Perkembangan doktrin Prediksi-prediksi keliru Demografi Menurut negara-negara KepercayaanRitual KeselamatanEskatologi 144.000 Hamba yang setia dan bijaksana HymneNama Tuhan DarahDisiplin Literatur Menara PengawalSadarlah! Kitab Suci Terjemahan Dunia Baru Daftar publikasi D...

 

Stephanie del Valle DíazLahirStephanie del Valle Díaz30 Desember 1996 (umur 27)San Juan, Puerto RikoTinggi5 ft 10 in (1,78 m)GelarMiss Toa Baja Mundo 2016Miss Mundo de Puerto Rico 2016Miss World 2016Pemenang kontes kecantikanWarna rambutCoklatWarna mataCoklatKompetisiutamaMiss Mundo de Puerto Rico 2016(Pemenang)Miss World 2016(Pemenang) Stephanie del Valle Díaz (lahir pada 30 Desember 1996) adalah seorang model, musisi dan ratu kecantikan asal Puerto Riko yang dimahkot...

Pakistani cricketer Babar AzamSIAzam in 2023Personal informationFull nameMohammad Babar AzamBorn (1994-10-15) 15 October 1994 (age 29)Walled City, Lahore, Punjab, PakistanNicknameBobby[1]Height5 ft 11 in (180 cm)[2]BattingRight-handedBowlingRight-arm off breakRoleBatterRelationsKamran Akmal (cousin)Umar Akmal (cousin)Adnan Akmal (cousin)International information National sidePakistan (2015–present)Test debut (cap 222)13 October 2016 v&#...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may be written from a fan's point of view, rather than a neutral point of view. Please clean it up to conform to a higher standard of quality, and to make it neutral in tone. (August 2023) (Learn how and when to remove this message) This article relies excessively on references to primary sources. Please improve this article by ...

 

La tabukaaa ou derbouka, est un instrument de percussion à son déterminé faisant partie des membranophones. Selon ses variantes, c'est un vase étranglé en son milieu et recouvert à l'une de ses extrémités d'une membrane, répandu dans toute l'Afrique du Nord, l'Afrique Subsaharienne, le Moyen-Orient et les Balkans. Elle daterait de 1100 av. J.-C. et elle est l'un des principaux instruments de percussion du monde arabo-musulman. Elle est liée au zarb persan (appelé aussi tombak) dont...

1969 Dutch filmNow Do You Get It Why I'm Crying?Directed byLouis van GasterenWritten byLouis van GasterenProduced byLouis van GasterenJoke MeermanCinematographyJan de BontPeter BosJos van SchoorEdited byRolf OrthelJan BostrieszHuib DuysterBato BachmanProductioncompanySpectrum FilmRelease date 1969 (1969) Running time62 min.CountryNetherlandsLanguagesDutch, German Now Do You Get It Why I'm Crying? (Begrijpt U Nu Waarom Ik Huil?) is a 1969 documentary film by Dutch director Louis van Gaste...

 

Idiophone Matraca redirects here. For the Mexican drag queen, see Matraka. RatchetClassification IdiophoneHornbostel–Sachs classification112.24(Scraped wheels – cog rattles or Ratchet)Related instruments Derkach A ratchet or rattle, more specifically, cog rattle[1] is a musical instrument of the percussion family and a warning/signaling device. It operates on the principle of the ratchet device, using a gearwheel and a stiff board mounted on a handle, which rotates freely. Variant...

 

Association of media and entertainment engineers SMPTE redirects here. For the album by Transatlantic, see SMPT:e. SMPE redirects here. For IBM's System Modification Program, see SMP/E. Society of Motion Picture and Television EngineersAbbreviationSMPTEPronunciation/ˈsɪmptiː/, rarely /ˈsʌmptiː/ Formation1916; 108 years ago (1916)Websitewww.smpte.org The Society of Motion Picture and Television Engineers (SMPTE) (/ˈsɪmptiː/, rarely /ˈsʌmptiː/), founded in 191...

United States historic placeMaurice and Thelma Rothman HouseU.S. National Register of Historic Places Show map of FloridaShow map of the United StatesLocationSt. Petersburg, FloridaCoordinates27°46′54″N 82°44′57″W / 27.78167°N 82.74917°W / 27.78167; -82.74917NRHP reference No.13000034[1]Added to NRHPFebruary 27, 2013 Maurice and Thelma Rothman House is a national historic site located at 1018 Park Street North, St. Petersburg, Florida in P...

 

American painter (1869–1955) Alice SchilleBorn(1869-08-21)August 21, 1869Columbus, OhioDiedNovember 6, 1955(1955-11-06) (aged 86)Columbus, OhioResting placeGreen Lawn CemeteryNationalityAmericanEducationWilliam Merritt ChaseAlma materColumbus Art School; Art Students League of New YorkKnown forpaintingStylePost Impressionism Puerto Rican Mother and Child, Alice Schille Alice Schille (1869–1955) was an American watercolorist and painter from Columbus, Ohio. She was renowned ...

 

Japanese manga series Fungus and IronFirst tankōbon volume cover菌と鉄(Kin to Tetsu)GenreAdventure[1]Dark fantasy[2]Science fiction[1] MangaWritten byAyaka KatayamaPublished byKodanshaEnglish publisherNA: Kodansha USAMagazineBessatsu Shōnen MagazineDemographicShōnenOriginal runMarch 9, 2021 – presentVolumes5 Fungus and Iron (Japanese: 菌と鉄, Hepburn: Kin to Tetsu) is a Japanese manga series written and illustrated by Ayaka Katayama. It began seria...

سلطنة ديماك بالإندونيسية: Kesultanan Demak 1475 – 1554   عاصمة بنتورو، جيبانغ نظام الحكم سلطاني لغات مشتركة جاوية الديانة الإسلام سلطان رادين فتاح (الأول) 1475 - 1518 باتي أنوس (الثاني) 1518-1521 ترينجانا (الثالث) 1521-1546 سنن براواتا (الرابع) 1546-1547 آريا بينانغسانغ (الأخير) 1547-1554 التاريخ تأس�...

 

Set of techniques to improve the distribution of workloads across multiple computing resources Diagram illustrating user requests to an Elasticsearch cluster being distributed by a load balancer. (Example for Wikipedia.) In computing, load balancing is the process of distributing a set of tasks over a set of resources (computing units), with the aim of making their overall processing more efficient. Load balancing can optimize response time and avoid unevenly overloading some compute nodes wh...