עקרון המקסימום

הגרף של בעיגול היחידה. ניתן לראות שאין מקסימום מקומי בפנים המעגל ושהמקסימום מתקבל על השפה.

באנליזה מרוכבת, עקרון המקסימום קובע שאם פונקציה הולומורפית בתחום וקיים שהוא מקסימום מקומי של אז קבועה.

בנוסח שקול, אם רציפה בקבוצה קומפקטית , והולומורפית בפנים שלה, אזי המקסימום של ב- מתקבל על השפה .

הוכחה

יהי מקסימום מקומי של . לכן קיים קטן מספיק כך שבעיגול מתקיים כי הולומורפית ו- מקסימום מוחלט של .

יהי . לפי משפט הערך הממוצע של גאוס:

לפי אי-שוויון המשולש האינטגרלי:

זוהי שרשרת אי-שוויונות חלשים המתחילה ומסתיימת באותו מספר, ועל כן כולם שוויונות. לכן:

נגדיר בקטע . עולה חלש, שכן מהמקסימליות של :

אולם מ- נובע כי , ולכן לכל . מכאן לכל , כלומר:

קיבלנו כי קבועה בעיגול המוכל בתחום. לכן (כפי שניתן להסיק ממשוואות קושי-רימן) גם קבועה בעיגול. ממשפט היחידות נובע כי קבועה בכל התחום.

עקרון המקסימום לפונקציה הרמונית

ניתן לנסח גרסה דומה לעקרון המקסימום גם לפונקציות הרמוניות. בניגוד למקרה המרוכב, משפט היחידות איננו תקף לפונקציות הרמוניות (למשל, הפונקציה עם שווה זהותית לאפס על אך איננה קבועה).

ראשית ננסח גרסה נקודתית:

משפט – אם פונקציה הרמונית בתחום , ומקבלת מקסימום מקומי בנקודה , אזי היא קבועה בסביבת .

הגרסה הכללית היא:

משפט – אם הרמונית בתחום חסום , ורציפה בשפה , אזי: אם קיימת כאשר אזי היא קבועה ב-.

במיוחד, המשפט תקף עבור החלק המדומה והממשי של כל פונקציה אנליטית, ובעזרתו ניתן להוכיח טענות רבות.

למשל, אם פונקציה שלמה ומתקיים , אז קבועה, משום שמתקיים ולפי עקרון המקסימום , ואז הפונקציה איננה העתקה פתוחה, ולכן היא קבועה, ולכן גם קבועה.

קישורים חיצוניים