משוואת לנז'בן

בפיזיקה, משוואת לַנזֶ'בָן (Langevin) היא משוואה דיפרנציאלית סטוכסטית, המתארת התפתחות לפי זמן של מערכת בעלת דרגות חופש. דרגות חופש אלו, מאופיינות בדרך כלל על ידי משתנים בעלי תכונות קולקטיביות הנעים בפרקי זמן ארוכים מאוד ביחס למשתנים אחרים במערכת, המתנהגים באופן מהיר מאוד או לא סדור.

לעיתים קרובות, ניתן לתאר באמצעות משוואה זו מערכות מקרוסקופיות בעלות חלק מיקרוסקופי, המשתנה בפרקי זמן קצרים מאוד ביחס למערכת הנמדדת. משוואה זו נוסחה לראשונה על ידי פול לנז'בן ב-1908, בניסיונו לתאר תנועה בראונית, הכוללת תנועה אקראית של חלקיק בנוזל עקב תנודות תרמיות סביב שיווי משקל. כיום, נעשה שימוש נרחב במשוואת לנז'בן, עבור מערכות בעלות משתנים סטוכסטיים בתחומי הפיזיקה הסטטיסטית, ביופיזיקה וכימיה בפרט.

היסטוריה

תנועה בראונית

התיעוד הראשון של תנועה בראונית הייתה על ידי רוברט בראון (בוטניקאי) ב-1827. בראון ראה, כי אבקנים שנעו על פני מים, תחת מיקרוסקופ, מבצעים תנועה לא יציבה ורנדומלית. הראשון לתת הסבר מתמטי ופיזיקלי לכך היה אלברט איינשטיין, אשר הסביר זאת במאמרו ב-1905[1]. באותו מאמר, תוך הנחת שיווי משקל בנוזל, שילב איינשטיין בין התפלגות מקסוול בולצמן לתהליך של הילוך מקרי.

איינשטיין טען, כי כאשר חלקיק נמצא בתוך נוזל, ולא חל עליו כוח גרר, אז בהינתן התנגשות עם מולקולה אחרת, מהירותו תשתנה. לעומת זאת, אם תווך הנוזל הוא בעל רמה מספיקה של צמיגות, השינוי במהירות ידעך מהר מאוד, כך שסך התוצאה של ההתנגשות יצור שינוי בהעתק החלקיק בלבד. למעשה, איינשטיין הסיק שתרומה של כל ההתנגשויות תביא ל"קפיצות" רנדומליות במיקום החלקיק הבראוני- כך שהחלקיק יבצע הילוך מקרי. בלקיחת "קפיצות" אינפיטסימליות, הוא הגיע למשוואה דיפרנציאלית חלקית במימד אחד- שהיא משוואת דיפוזיה. איינשטיין הצליח למצוא את הקשר בין קבוע הדיפוזיה המקרוסקופי, לתכונותיו האטומיות של החומר:

כאשר הוא קבוע הדיפוזיה, הוא קבוע בולצמן, מייצגת את הטמפרטורה, הוא מקדם הצמיגות של הנוזל, ו- הוא הרדיוס של החלקיק הבראוני. אופי המשוואה הדיפרנציאלית החלקית אליה הגיע איינשטיין (כמו גם מריאן סמולוכובסקי (אנ'), שעל שמו נקראת המשוואה), היא מקרה פרטי של משוואה מסוג המוכר כמשוואות פוקר-פלאנק - המראות התפתחות בזמן של צפיפות הסתברות של מערכת. בפתרונו, הצליח איינשטיין להראות, שריבוע הערך הממוצע של העתק החלקיק הוא פרופורציונלי לקבוע של הדיפוזיה. בכך הגיע איינשטיין לתוצאה מהפכנית, והראה (תוך שימוש בהתפלגות מקסוול-בולצמן בשיווי משקל), כי המשוואה עבור צפיפות ההסתברות תתפתח באופן ליניארי בזמן. פרט זה חשוב במיוחד, מכיוון שכך התפתחות זו תלויה בטמפרטורה וצמיגות הנוזל בלבד.

הצגת משוואת לנז'בן

התיאוריה שפיתחו סמולוכובסקי ואיינשטיין עבור התנועה הבראונית, נשענה כמעט לחלוטין על התפלגות צפיפות ההסתברות, ועל משוואות פוקר-פלאנק. ב-1908, הציג פול לנז'בן במאמרו "על התיאוריה של תנועה בראונית"[2], דרך שונה לפתרון בעיה זו. לנז'בן, ניסח את הבעיה באמצעות משוואת כוחות ניוטונית, המכילה חלק "דטרמיניסטי" (המכיל את כוח הגרר של חלקיק הנמצא בנוזל, ופוטנציאלים נוספים וידועים) וחלק אקראי- אשר מייצג את ההתנגשויות של חלקיקי הנוזל בחלקיק הבראוני. אותו חלק רנדומלי, בדיעבד אינו ניתן למדידה, עקב פרקי הזמן הקצרים ביותר בהם נעשות ההתנגשויות השונות. גישתו של לנז'בן הייתה מהפכנית בזמנו, וקידמה משמעותית את נושא המחקר של משוואות דיפרנציאליות סטוכסטיות, הן בפיזיקה והן במתמטיקה. בשנות ה-20 של המאה ה-20, נתן נורברט וינר את הניסוח המתמטי והגדיר תנועה בראונית, כמקרה פרטי של מערכת סטוכסטית. כמו כן הוכיח שתנועה בראונית מוגדרת על ידי פונקציה רציפה, שאינה גזירה באף נקודה. ב-1942, הגדיר קיושו איטו את האינטגרל הסטוכסטי- המבוסס גם הוא על תנועה בראונית.

משוואת לנז'בן אינרטית במימד אחד

משוואת לנז'בן במימד אחד, על פי החוק השני של ניוטון עבור תנועה של חלקיק בראוני בנוזל, היא:

כאשר החלק הדטרמיניסטי מכיל את האיברים:

  • – הכוח המאפיין פוטנציאלים שונים (כוח אלקטרומגנטי, כוח גרביטציוני וכו'). חלק זה אינו מופיע בפיתוח המשוואה עבור חלקיק בראוני בנוזל של לנז'בן, עקב תרומתן הזניחה של השפעות אלו.
  • – כוח הגרר בנוזל, בדרך כלל מאופיין על ידי חוק סטוקס, הקובע כי כוח הגרר מתכונתי למהירות החלקיק (ראה חוק סטוקס). בצורה זו , כאשר הוא מקדם הצמיגות של התווך הנוזלי, ו- הוא רדיוס הכדורי של החלקיק.

החלק האקראי של המשוואה הוא , המייצג את ההתנגשות האקראית של חלקיקי הנוזל בחלקיק הבראוני. לחלק זה המאפיינים נובעים מהשיקולים הפיזיקליים הבאים:

  • אינו תלוי במפורש ב- .
  • משתנה בפרקי זמן קצרים בהרבה מ .
  • מכיוון שהתנגשות חלקיקי הנוזל בחלקיק הבראוני היא אקראית ואיזוטרופית למרחב, ערך הממוצע של פונקציה זו על אנסמבל של חלקיקים שווה לאפס.
  • מכיוון ש- משתנה בפרקי זמן קצרים בהרבה בהשוואה למיקום, ניתן להניח שכל התנגשות היא מיידית. שינוי מהיר זה ניתן לבטא כ:

כאשר היא הדלתא של דיראק, ו- היא הדלתא של קרוניקר. שיקול זה נובע מהקירוב עבור הבדלי סדרי הגודל של פרק הזמן של פונקציה R(t) ל- ואף להעתק, והופך למדויק רק עבור טווחי זמן גדולים- המתארים תנועה עבור חלקיקים בראונים "מקרוסקופיים" (כאשר מסת החלקיק גדולה משמעותית ממסת חלקיקי הנוזל). הסתכלות דיפרנציאלית על קשר הקורלציה אינו נכון לחלוטין, שכן גם מהירות החלקיק אינה מוגדרת היטב בגבול זה. בטיפול במשוואות דיפרנציאליות סטוכסטיות כגון משוואת לנז'בן, נהוג לקחת אינטגרל כך ש-

כאשר בגבול הרצף

כאשר .

החלק האקראי של המשוואה נקרא לעיתים כוח לנז'בן, ועבור חלקיק בראוני, חלק זה מראה כיצד שינויים בטמפרטורה מכתיבים את אופייה הסטוכסטי של התנועה הבראונית.

לדוגמה, נסתכל פתרון של משוואת לנז'בן עבור חלקיק בראוני. אם נכפיל את שני צידי המשוואה ב-:

כאשר :

 ו- 

בהצבה במשוואה, ולקיחת ערך ממוצע עבור אנסמבל חלקיקים, נקבל:

מכיוון שעבור החלק האקראי ערך ממוצע של אנסמבל חלקיקים מתאפס, חלק זה של המשוואה נופל. מחוק החלוקה השווה אנו יודעים .

נסמן ,

ונקבל:

עבור פרקי זמן גדולים מ , הפתרון מתפתח ליניארית בזמן. כלומר:

ובכך, הצטמצמנו למקרה הפרטי של פתרון איינשטיין לתנועה בראונית, ושהעתק החלקיק מתכונתי לשורש הטמפרטורה.

אפיון כללי של גישת לנז'בן

ניתן לתת למשוואות לנז'בן פורמליזם כללי יותר[3]. בהנחה וישנה מערכת שהתנהגותה המקרוסקופית ידועה, וניתן לראות כי חייב להתקיים בה תנודות מסוימות. בשביל תיאור מלא של התנודות הללו יש לבצע את שלושת הצעדים הבאים:

צעד ראשון: יש לרשום את משוואות התנועה המקרוסקופיות של המערכת.

צעד שני: יש להוסיף כוח לנז'בן, המקיים את התכונות הבאות (חלקן אופיינו מוקדם יותר בפיתוח המקרה של תנועה בראונית):

  1. במשוואת הכוחות ישנו גורם דטרמיניסטי, ליניארי עם מקדם ריסון, וגורם אקראי סטוכסטי () . הגורם הסטוכסטי הוא אי-רגולרי, אך תכונותיו הממוצעות כאנסמבל חלקיקים פשוטות, בצורה שאפשר להניח: שהמרחקים בין החלקיקים המרכיבים אותו הוא גדול כך שאין אינטראקציה ביניהם או שהמדידות שנלקחות הם בפרקי זמן גדולים מספיק ביניהן.
  2. התכונות הסטוכסטיות של ניתנות ללא קשר למהירות החלקיק, כך שהוא מתפקד ככוח חיצוני. בצורה זו, הממוצע שלו מתאפס
  3. הכוח הסטוכסטי מתבטא עקב שינויים מהירים מאוד בפרקי הזמן הנתונים, ולכן ניתן להתייחס לפונקציית הקורלציה שלו: . בתצורה זו הוא קבוע. באופן מעשי, פונקציית הדלתא צריכה להיות פונקציה של עם רוחב המתאים לזמן של התנגשות/ שינוי יחיד. ניתן להתייחס לפונקציה זו כפונקציה זו כל פעולה זו קצרה משמעותית בכמה סדרי גודל מכל שאר סדרי הגודל הזמניים בבעיה.
  4. היא פונקציה עם התפלגות גאוסיאנית, כך שהמומנטים החיוביים שלה מקיימים: באופן זה, R(t) מאופיינת כרעש לבן גאוסיאני.

צעד שלישי: יש לדרוש שהקבוע מתאים כך שהפתרון עבור תהליך סטוכסטי סטציונרי, ונותן בחזרה את ערכי ממוצע של התנודות כפי שהן ידועות ממכניקה סטטיסטית (או משיקולים פיזיקליים נוספים).

שלושת צעדים אלו מרכיבים את גישת לנז'בין, בה משתמשים בתחומים רבים בפיזיקה, כימיה וביולוגיה. התנודות אינן בהכרח צריכות לנבוע מתנודות תרמיות או מטבעם הדיסקרטי של חלקיקים. התנודות הסטוכסטיות יכולות לנבוע ממידול אות אקראי הנכנס לקו תמסורת, גדילה של מין ביולוגי תחת השפעת מזג אוויר, עומס אקראי על גשרים וכו'.

דוגמאות

משוואת לנז'בן עבור פוטנציאל הרמוני

עבור חלקיק בעל מסה בממד אחד, הנע תחת פוטנציאל הרמוני () משוואות לנז'בן הם:

כאשר . הכוח האקראי הוא תהליך אקראי גאוסיאני, עבורו:

בהסתכלות על צפיפות ספקטרום התדרים בהתמרת פורייה, נקבל:

המאופיין כרעש לבן. אם נבצע את התמרת פורייה על משוואות לנז'בין ולא רק על קשר הקורולציה שלנו:

מכן ניתן לפתור עבור  :

צפיפות ספקטרום התדרים היא פרופורציונלית ל- ולכן :

בהתמרה חזרה למרחב הזמן נקבל:

אינטגרל זה ניתן לפתור במישור המרוכב, תוך שימוש במשפט השאריות. תוצאתו הסופית תהיה:

נשים לב שעבור , נקבל חזרה את חוק החלוקה השווה - .

תנודות במעגל חשמלי RC

אם נסתכל על מעגל חשמלי RC עם התנגדות ליניארית . המטען על קבל (באופן מאקרוסקופי) חווה ריסון עקב ההתנגדות, אליו נוסיף חלק אקראי של רעש .

בשיווי משקל תרמי, האנרגיה האלקטרוסטטית הפוטנציאלית ידועה, כמו כן מחוק החלוקה השווה נקבל:

הטמפרטורה היא של המעגל כולו, אך ניתן להניח שזוהי הטמפרטורה של הנגד בלבד, שכן רק שם מיוצר הרעש התרמי. אם כן, אפשר להסתכל על הנגד כמקור לתנודות בזרם המתווספות לזרם המקרוסקופי הכולל. ניתן לראות כי ושקבוע צריך להיות שווה ל- .ולכן נוכל לראות את הקשר:

באופן דומה ניתן לבצע עבור המתח כך ש- משם ניתן לראות:

ואנחנו מקבלים באופן מיידי רעש ג'ונסון-נייקוויסט.

הקשר לאינטגרלי איטו וסטרטונוביץ'

כפי שהוזכר, קשר הקורלציה עבור הוא פרופורציונלי לפונקציית דלתא של דיראק, אך אינו בהכרח פונקציית דלתא, אלא פונקציה בעלת עליה חדה עם רוחב המתאים לפרק זמן קצר ביותר () . באופן כללי יותר, היא פונקציה סטוכסטית מוגדרת היטב, כך שנוכל להגדיר את משוואת לנז'בן גם בצורה לא ליניארית. כל עוד אינה סינגולרית- ניתן לקחת את הגבול ללא בעיה. כאשר פונקציית הדלתא בקשר הקורלציה, אשר מפורשת עבור קפיצה קטנה אך לא אינסופית, ניתן להשתמש באינטגרלי סטרטונוביץ'. עבור שימוש באינטגרלי איטו, יש לדרוש מפורשות שפרק זמן זה הוא אפס. (למידע נוסף ראה הלמה של איטו).

יתרונות

ישנם יתרונות לשימוש בגישת לנז'בן על פני שיטות דומות, כגון משוואת פוקר-פלאנק:

  1. באופן כללי, קל יותר להבין באופן אינטואיטיבי את שיטה זו, שכן היא מבוססת על התפתחות בזמן של משתנה אקראי- במקום התפתחות בזמן של פונקציית צפיפות הסתברות של משתנה כלשהו.
  2. לפעמים יש קושי מסוים בהפרדת משתנים במשוואות כגון משוואת פוקר-פלאנק, ויש צורך בהרחבה עם פונקציות אורתוגונליות המהוות פתרון (למשל פולינומי פורייה -הרמיט)

ראו גם

ביבליוגרפיה

  • The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering (Third edition), World Scientific Series in Contemporary Chemical Physics - Vol 27.
  • van Kampen, Stochastoc Processes in Physics and Chemistry
  • Progress of Theoretical Physics Supplement, Volume 130, January 1998, Pages 17–27,https://doi.org/10.1143/PTPS.130.17
  • ; reviewed by D. S. Lemons & A. Gythiel: Paul Langevin’s 1908 paper "On the Theory of Brownian Motion" [...], Am. J. Phys. 65, 1079 (1997),
  • Reif, F. Fundamentals of Statistical and Thermal Physics, McGraw Hill New York, 1965. See section 15.5 Langevin Equation

הערות שוליים

  1. ^ Einstein, A, "On the movement of small particles suspended in stationary liquids required by the molecularkinetic theory of heat.", Ann. d. Phys
  2. ^ Langevin, P. (1908), "Sur la théorie du mouvement brownien [On the Theory of Brownian Motion]". C. R. Acad. Sci. Paris. 146: 530–533.; reviewed by D. S. Lemons & A. Gythiel: Paul Langevin’s 1908 paper "On the Theory of Brownian Motion" [...], Am. J. Phys. 65, 1079 (1997), https://doi.org/10.1119%2F1.18725
  3. ^ N.G van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier, 2007

Read other articles:

Audi A4InformasiProdusenAudi AGMasa produksi1994–sekarangPerakitanIngolstadt, JermanBodi & rangkaKelasMobil kompak eksekutifTata letakmesin depan longitudinal ;penggerak roda depan atau permanen quattro (penggerak 4 roda)PlatformSeri Platform Grup B VolkswagenMobil terkaitAudi S4Audi RS4Volkswagen PassatSkoda SuperbSEAT ExeoKronologiPendahuluAudi 80 / 90 / Cabriolet Audi A4 adalah sebuah mobil eksekutif ukuran kompak yang diproduksi oleh perusahaan otomotif Jerman, Audi AG sejak ak...

 

Invasi Indonesia ke Timor TimurOperasi SerojaBagian dari Perang DinginPeta Bahasa Inggris yang menunjukkan daerah yang di invasi oleh IndonesiaTanggal7 Desember 1975 – 17 Juli 1976(7 bulan, 1 minggu dan 3 hari)LokasiTimor TimurHasil Kemenangan Indonesia Pendudukan Indonesia di Timor Timur sampai tahun 1999 Genosida Timor TimurPerubahanwilayah Timor Timur diduduki Indonesia ∟Provinsi Timor TimurPihak terlibat Indonesia ABRI PSTT UDT[1] APODETI Didukung oleh:  Amerika Seri...

 

Yang MuliaEduardus SangsunS.V.D.Uskup RutengGerejaGereja Katolik RomaKeuskupanRutengPenunjukan3 Desember 1984(41 tahun, 172 hari)Masa jabatan berakhir13 Oktober 2008(65 tahun, 121 hari)PendahuluVitalis Djebarus, S.V.D.PenerusHubertus LetengImamatTahbisan imam12 Juli 1972[1](29 tahun, 28 hari)Tahbisan uskup25 Maret 1985(41 tahun, 284 hari)oleh Donatus Djagom, S.V.D.Informasi pribadiNama lahirEduardus SangsunLahir(1943-06-14)14 Juni 1943Karot...

Hold On to SixteenEpisode GleeNomor episodeMusim 3Episode 8SutradaraBradley BueckerPenulisRoss MaxwellMusikRed Solo CupBuenos AiresSurvivor / I Will Survive ABC Control Man in the MirrorWe Are YoungTanggal siar6 Desember 2011 (2011-12-06)Bintang tamu Idina Menzel sebagai Shelby Corcoran John Schneider sebagai Dwight Evans Chord Overstreet sebagai Sam Evans Damian McGinty sebagai Rory Flanagan Vanessa Lengies sebagai Sugar Motta Keong Sim sebagai Mike Chang Sr. Tanya Clarke sebagai M...

 

فلسطين 194 هي الاسم المعطى لحملة دبلوماسية من قبل السلطة الوطنية الفلسطينية لاكتساب العضوية في الأمم المتحدة لدولة فلسطين. اسم الحملة إشارة إلى أن تصبح فلسطين العضو 194 في الأمم المتحدة.[1] وتعد هذه الحملة جزءا من إستراتيجية لاكتساب الاعتراف الدولي بدولة فلسطين على أساس ا...

 

Questa voce o sezione sull'argomento competizioni calcistiche non è ancora formattata secondo gli standard. Commento: Molte pagine di campionati regionali come queste vanno corrette con il nuovo modello di voce perché questa pagina è stata realizzata con modelli vecchi ed è obsoleta.In questa pagina sono da correggere:le squadre partecipanti, con la tabellina in cui non è più possibile linkare le squadre non enciclopediche alle città, la città va scritta nella riga inferiore con...

Voce principale: Associazione Calcio Monza Brianza 1912. Associazione Calcio MonzaStagione 1949-1950Sport calcio Squadra Monza Allenatore Annibale Frossi Presidente Giuseppe Borghi Serie C5º nel girone A Maggiori presenzeCampionato: Corno, Dazzi, Pasolini (41) Miglior marcatoreCampionato: Dazzi (34) StadioSan Gregorio 1948-1949 1950-1951 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Associazione Calcio Monza nelle competizioni ufficiali dell...

 

Organism that eats mostly fruit For the human diet, see fruitarianism. A Bornean orangutan (Pongo pygmaeus) eating a fruit. A frugivore (/fruːdʒɪvɔːr/) is an animal that thrives mostly on raw fruits or succulent fruit-like produce of plants such as roots, shoots, nuts and seeds. Approximately 20% of mammalian herbivores eat fruit.[1] Frugivores are highly dependent on the abundance and nutritional composition of fruits. Frugivores can benefit or hinder fruit-producing plants by e...

 

Wiki Science CompetitionOfficial logo of Wiki Science CompetitionGenreScientific photography, Nature photography, Scientific illustrationBegins1-15 November [1]Ends1-15 December [2]Location(s)WorldwideYears active6Inaugurated2017Most recent2023ParticipantsPhotographers, researchers, studentsOrganised byWikipedia community membersWebsitewikisciencecompetition.org The Wiki Science Competition (WSC) is a global science photography competition for students, researchers, and others...

Рейс 261 Alaska Airlines Мемориал рейсу 261 Общие сведения Дата 31 января 2000 года Время 16:21 PST Характер Падение с эшелона, LOC-I (потеря управления) Причина Повреждение винтового домкрата и отказ стабилизатора из-за некачественного технического обслуживания Место Тихий океан, в 4,5 км о�...

 

Town in South AustraliaMount PleasantSouth AustraliaThe Totness Inn Hotel on the main street of Mount PleasantMount PleasantCoordinates34°46′23″S 139°03′04″E / 34.773°S 139.051°E / -34.773; 139.051Population618 (UCL 2021)[1]Established1843Postcode(s)5235Location55 km (34 mi) East of Adelaide via LGA(s) Barossa Council Mid Murray CouncilState electorate(s)SchubertFederal division(s)Barker Localities around Mount Pleasant: Gumeracha Springt...

 

Relic - L'evoluzione del terrorePenelope Ann Miller in una scena del film.Titolo originaleThe Relic Paese di produzioneStati Uniti d'America Anno1997 Durata110 min Genereorrore, fantascienza RegiaPeter Hyams SoggettoLincoln Child, Douglas Preston (romanzo) SceneggiaturaAmy Holden Jones, John Raffo, Rick Jaffa, Amanda Silver ProduttoreSam Mercer, Gale Anne Hurd Produttore esecutivoMark Gordon, Gary Levinsohn FotografiaPeter Hyams MontaggioSteven Kemper Effetti specialiStan Winston, Garry E...

LeasePlanIndustryLeasingFounded1963; 61 years ago (1963)HeadquartersNetherlandsNumber of locationsEstablished in 32 countriesArea servedWorldwideKey peopleTex Gunning (CEO)[1]ServicesFleet management servicesOwnerIndependent (1963–85)ABN Amro (1985–2004)LP Group B.V. (2004–23)ALD (2023–present)Number of employeesMore than 6500Websitewww.leaseplan.com LeasePlan is an international company of Dutch origins, specialised in automobile leasing and fleet management...

 

Mosque in Ahmedabad, Gujarat, India Jama MosqueReligionAffiliationIslamStatusActiveLocationLocationAhmedabadMunicipalityAhmedabad Municipal CorporationStateGujaratLocation of Jama mosque in Gujarat, IndiaShow map of AhmedabadJama Mosque, Ahmedabad (Gujarat)Show map of GujaratGeographic coordinates23°01′26″N 72°35′14″E / 23.023822°N 72.587222°E / 23.023822; 72.587222ArchitectureTypeMosqueStyleIndo-Islamic architectureFounderAhmed Shah ICompleted1424Specifica...

 

British art historian (1936–1971) Camilla Gray Camilla M. Gray, also known as Camilla Gray-Prokofieva, (1936 – 17 December 1971) was a British art historian whose book, The Great Experiment: Russian Art 1863–1922, broke new ground in promoting this branch of modernism. Gray organised several exhibitions in London on the relevant artists such as Kazimir Malevich, Mikhail Larionov, and Natalia Goncharova. She married Oleg Prokofiev, son of the composer Sergei Prokofiev. Early life Camilla...

River in Eastern Europe Mureș/MarosThe Mureș in AradLocationCountriesRomania and HungaryCitiesAradTârgu MureșSzegedPhysical characteristicsSourceCarpathian Mountains • locationIzvorul Mureșului, Harghita County, Romania • coordinates46°36′55″N 25°37′2″E / 46.61528°N 25.61722°E / 46.61528; 25.61722 • elevation850 m (2,790 ft) MouthTisza • locationSzeged, Csongrád County, Hun...

 

A gravitational effect also known as the differential force and the perturbing force Figure 1: Tidal interaction between the barred spiral galaxy NGC 169 and a smaller companion[1] The tidal force or tide-generating force is a gravitational effect that stretches a body along the line towards and away from the center of mass of another body due to spatial variations in strength in gravitational field from the other body. It is responsible for the tides and related phenomena, including ...

 

この記事は広告・宣伝活動のような記述内容になっています。ウィキペディアの方針に沿った中立的な観点の記述内容に、この記事を修正してください。露骨な広告宣伝活動には{{即時削除/全般4}}を使用して、即時削除の対象とすることができます。(2022年8月) このページのノートに、このページに関する議論があります。議論の要約:Template:宣伝によ...

1975–1999 military occupation See also: Indonesian invasion of East Timor, East Timor genocide, and East Timor (province) Indonesian occupation of East TimorPart of the Cold War (until 1991)DateDe facto:7 December 1975 – 31 October 1999(23 years, 10 months, 3 weeks and 3 days)De jure:7 December 1975 – 20 May 2002(26 years, 5 months, 1 week and 6 days)LocationEast TimorResult 1999 East Timorese crisis East Timor gains independence after a...

 

غران بريمو ميغيل إندوراين 2019 تفاصيل السباقسلسلة71. جائزة ميغيل إندوراينمسابقاتطواف أوروبا للدراجات 2019 1.1‏Spanish Road Cycling Cup 2019التاريخ6 أبريل 2019المسافات193 كمالبلد إسبانيانقطة البدايةإستيانقطة النهايةإستياالفرق18عدد المتسابقين في البداية123عدد المتسابقين في النهاية89متوسط ا...