העיגול ברדיוס 1 סביב הראשית, שמעגל היחידה הוא שפתו, נקרא עיגול היחידה.
הגדרת הפונקציות הטריגונומטריות
בהינתן זווית כלשהי, מגדירים אותה כרדיוס ש"מסתובב" נגד כיוון השעון ויוצר את הזווית הזאת עם הכיוון החיובי של ציר ה-x. אם הזווית שלילית, הסיבוב הוא עם כיוון השעון. אם הזווית גדולה מ- (או רדיאנים), זה יותר מסיבוב אחד ועל כן הזווית עם ציר ה-x היא השארית של חלוקת הזווית ב-.
אם הזווית היא ו- היא הנקודה בה נוגע הרדיוס במעגל, אז נגדיר:
כאשר מעבירים סדרה עתיתלמרחב הפאזה נהוג להשתמש במערכת קואורדינטות של המישור המרוכב. תחת מעבר זה הפאזה של סדרה עתית משמשת על מנת להגדיר משתנה מרוכב שהארגומנט שלו הוא הפאזה של הסדרה העתית וגודלו הוא אחד. העתקה זו מעתיקה כל מקטע של סדרה עתית אל עבר רדיוס של מעגל היחידה המרוכב. המעבר אל מרחב הפאזה מאפשר הפעלה של שיטות לחקר קישוריות בין סדרות כמו phase lag index או (Inter-site phase clustering (ISPC. חקר הקישוריות חשוב במיוחד בחקר קישוריות מוחית כיוון שהמידע שנמדד מהמוח האנושי הוא לרוב סדרה עתית. וככזה מציאת הקישוריות בין סדרות עתיות שקול למציאת קישוריות בין אזורים אלקטרודות או תדרים מוחיים כתלות במידע הנמדד.