הטמפרטורה הנדרשת לייצור הליום נוזלי נמוכה בגלל חולשת האטרקציות בין אטומי ההליום. כוחות־בין־אטומיים אלה, בהליום, חלשים מלכתחילה כיוון שהליום הוא גז אציל, אבל האטרקציות בין האטומיים פוחתות עוד יותר על ידי השפעות קוונטיות. השפעות אלה משמעותיות בהליום בגלל המסה האטומית הנמוכה – כארבע יחידות מסה אטומית. אנרגיית נקודת האפס של ההליום הנוזלי נמוכה יותר אם האטומים שלו פחות מוגבלים על ידי שכניהם. לפיכך, בהליום הנוזלי, אנרגיית מצב היסוד שלו יכולה לקטון על ידי גידול טבעי במרחק הבין־אטומי הממוצע שלו. עם זאת, במרחקים גדולים יותר, ההשפעות של הכוחות הבין־אטומיים בהליום אפילו חלשות יותר.[3]
בגלל הכוחות הבין אטומיים החלשים במיוחד בהליום, יסוד זה נשאר נוזלי בלחץ אטמוספירי החל מנקודת העיבוי שלו ועד האפס המוחלט ולא מתמצק. הליום נוזלי מתגבש רק בטמפרטורות נמוכות במיוחד בשילוב לחצים גדולים. בטמפרטורות מתחת לנקודות העיבוי שלהם, הן הליום-4 והן הליום-3 עוברים מעבר פאזה לנוזל־על. (מפורט בטבלה למטה).[3]
הליום-4 נוזלי והליום-3, הנדיר, אינם לגמרי־ניתנים־לערבוב (כלומר, לא מתמוססים בכול יחס).[4] מתחת 0.9 קלווין בלחץ האדים הרוויים שלהם, תערובת של שני איזוטופים עוברת היפרדות לפאזות לנוזל רגיל (בעיקר הליום-3), אשר צף על נוזל־על צפוף המורכב בעיקר מהליום-4.[דרוש מקור] היפרדות זו לפאזות קורת כיוון שעל ידי כך האנתלפיה הכוללת של הליום נוזלי יורדת.
בטמפרטורות נמוכות מאוד, פאזת הנוזל־על עשירה בהליום-4 ויכול להכיל עד 6% של הליום-3 בתמיסה. זה מאפשר את השימוש בקרור דילול (dilution refrigerator), אשר מסוגל להגיע לטמפרטורות של כמה מיקרו־קלווין.[4][5]
להליום-4 על־נוזלי יש תכונות שונות באופן משמעותי מן ההליום הנוזלי הרגיל.
נקודת המעבר למדה: כשהנוזל המקורר הוא ב־2.17K, הוא רותח בבת אחת ובאופן מוגבר ונמרץ.
פאזת נוזל־העל בטמפרטורה מתחת 2.17K – במצב זה, המוליכות התרמית גבוהה ביותר. עקב כך, החום בגוף הנוזל מועבר לפני השטח מידית ואידוי מתרחש רק מפני השטח של הנוזל. לכן אין בועות גז בגוף הנוזל.
Freezing Physics: Heike Kamerlingh Onnes and the Quest for Cold, Van Delft Dirk (2007). Edita - The Publishing House Of The Royal Netherlands Academy of Arts and Sciences. ISBN 978-90-6984-519-7.