Selon le théorème du viriel, l'énergie de liaison gravitationnelle d'une étoile doit être d'environ deux fois son énergie thermique interne pour que l'équilibre hydrostatique soit maintenu[2]. Au fur et à mesure que le gaz d'une étoile devient plus relativiste, l'énergie de liaison gravitationnelle requise pour l'équilibre hydrostatique se rapproche de zéro et l'étoile devient instable (très sensible aux perturbations), ce qui peut conduire à une supernova dans le cas d'une étoile de masse élevée en raison de fortes pression de radiation, ou à un trou noir dans le cas d'une étoile à neutrons.
Dérivation pour une boule uniforme
L'énergie de liaison gravitationnelle d'une boule de rayon est calculée en séparant celle-ci couche par couche de l'extérieur vers l'intérieur et en considérant que l'épaisseur de chacune des couches est infinitésimal ().
En supposant une masse volumique constante , les masses d'une couche et de la sphère à l'intérieur sont :et
L'énergie requise pour une couche est le négatif de l'énergie potentielle gravitationnelle :L'intégration sur toutes les couches donne :
Puisque est simplement égal à la masse de l'ensemble divisée par son volume pour les objets de masse volumique uniforme, nous avons donc :En remplaçant, on obtient :
Cela peut être vu comme une composante de masse négative du système. On peut facilement démontrer que cette composante négative ne peut jamais dépasser la composante positive d'un système. En effet, une énergie de liaison négative supérieure à la masse du système lui-même nécessiterait que le rayon du système soit inférieur à :
et donc jamais visible pour un observateur extérieur. Cependant, ce n'est qu'une approximation newtonienne et dans des conditions relativistes, d'autres facteurs doivent également être pris en compte[4].
Les équations d'état relativistes des étoiles à neutrons incluent un graphique du rayon par rapport à la masse pour divers modèles[5]. Les rayons les plus probables pour une masse d'étoile à neutrons donnée sont encadrés par les modèles AP4 (rayon le plus petit) et MS2 (rayon le plus grand).
L'énergie de liaison () est le rapport de la masse équivalente d'énergie de liaison gravitationnelle à la masse gravitationnelle de l'étoile à neutrons observée de rayon ,
où
En considérant la masse comme une fraction de la masse solaire,
alors l'énergie de liaison fractionnaire relativiste d'une étoile à neutrons est
Exemple de calcul
En supposant que la Terre est une boule de densité uniforme[note 1] avec = 5,97 × 1024 kg et = 6,37 × 106 m, alors = 2,24 × 1032 J, ce qui équivaut à peu près à une semaine de la production totale d'énergie du Soleil. Cela correspond également à 37,5 MJ/kg, soit 60 % de la valeur absolue de l'énergie potentielle par kilogramme à la surface.
Au niveau de la masse équivalente, le fait que la Terre soit une sphère gravitationnelle de sa taille actuelle « coûte » 2,494 21 × 1015 kg de masse, soit l'équivalent d'environ un quart de la masse de Phobos. Ainsi, si les atomes de la planète bleue étaient clairsemés sur un volume arbitrairement grand, la Terre pèserait 2,494 21 × 1015 kg de plus que sa masse actuelle.
La dépendance réelle de la densité terrestre à la profondeur est déduite des temps de trajet des ondes sismiques (voir l'équation d'Adams-Williamson(en)) donnée dans le modèle PREM[6]. En utilisant cela, l'énergie de liaison gravitationnelle réelle de la Terre peut être calculée numériquement et donne = 2,49 × 1032 J.
↑ a et b(en) Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
↑(en) Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272