En physique des particules, l'interaction de Fermi (aussi connue comme la théorie de Fermi de la désintégration β) est une explication de la radioactivité β, proposée par Enrico Fermi en 1933[1],[2],[3],[4]. La théorie suppose quatre fermions interagissant directement avec les autres, en un vertex (un sommet de convergence d'actions).
Fermi introduisit pour la première fois ce couplage dans sa description de la désintégration bêta en 1933[6]. L'interaction de Fermi a été le précurseur de la théorie de l'interaction faible, où l'interaction entre le proton-neutron et l'électron-antineutrino est véhiculée par un boson virtuel W−.
Fermi a d'abord soumis sa théorie de la désintégration bêta à la célèbre revue Nature, qui l'a rejetée en indiquant qu'elle était « trop spéculative ». Nature admit plus tard que le rejet était l'une des plus grandes erreurs éditoriales de son histoire. Fermi soumit ensuite le papier à des publications italienne et allemande qui l'acceptèrent et le publièrent en 1933 dans ces deux langues. Nature republia tardivement, en anglais, le rapport de Fermi sur la désintégration bêta le .
Fermi trouva le rejet initial de son papier si troublant qu'il décida de se retirer provisoirement de la physique théorique, et se tourna ainsi vers la physique expérimentale. Cela le conduisit brièvement vers son célèbre travail sur l'activation des noyaux avec des neutrons froids.
La nature de l'interaction
L'interaction permet aussi d'expliquer la désintégration du muon via un couplage d'un muon, électron-antineutrino, muon-neutrino et électron, avec la même intensité fondamentale de l'interaction. Cette hypothèse fut avancée par Gershtein et Zeldovich et est connue comme l'hypothèse du courant vecteur conservé[7].
La théorie à quatre fermions de Fermi décrit remarquablement bien l'interaction faible. Cependant, la section efficace calculée grandit comme le carré de l'énergie , rendant invraisemblable le fait que la théorie soit valide à des énergies plus grandes qu'environ 100 GeV. La solution est de remplacer l'interaction de contact de quatre fermions par une théorie plus complète (complétion ultraviolette) — un échange d'un boson W ou Z comme expliqué par la théorie électrofaible.
Dans la théorie initiale, Fermi supposa que la forme de l'interaction est un couplage de contact de deux courants vecteurs. Par conséquent, Lee et Yang montrèrent que rien n'empêche l'apparition d'un courant axial violant la parité, ce qui fut confirmé par des expériences réalisées par Chien-Shiung Wu[8],[9].
La prise en compte de la violation de la parité dans l'interaction de Fermi a été effectuée par George Gamow et Edward Teller dans les transitions Gamow-Teller, qui décrivent l'interaction de Fermi en termes de décroissances « permises » violant la parité et de décroissances « super permises » la conservant impliquant des états de spins de l'électron et du neutrino anti-parallèle et parallèle respectivement.
Avant l'avènement de la théorie électrofaible et du modèle standard, George Sudarshan et Robert Marshak, et également de manière indépendante Richard Feynman et Murray Gell-Mann, furent capables de déterminer la structure tenseur correcte (vecteur moins axial vecteur, V−Ade l'interaction à quatre fermions.
Constante de Fermi
La constante de couplage de Fermi[10],[11], dite constante de Fermi[12],[13],[14], est la constante[13]de couplage[11],[12],[14] exprimant l'intensité de l'interaction de Fermi GF. La détermination expérimentale la plus précise de la constante de Fermi provient de la mesure du temps de vie du muon, qui est inversement proportionnel au carré de GF (lorsque l'on néglige la masse du muon devant la masse du boson W)[15].
[Fermi 1933] (it) E. Fermi, « Tentativo di una teoria dell'emissione dei raggi beta » [« Essai de théorie de l'émission des rayons bêta »], La Ricerca Scientifica, vol. 2, no 12, , p. 491-495.
[Chitwood et al. 2007] (en) D. B.Chitwoodet al. (MuLan), « Improved measurement of the positive muon lifetime and determination of the Fermi constant » [« Meilleure mesure de la durée de vie du muon positif et détermination de la constante de Fermi »], Phys. Rev. Lett., vol. 99, no 3, , p. 1re part., art. no 3, id. 032001 (DOI10.1103/PhysRevLett.99.032001, Bibcode2007PhRvL..99c2001C, arXiv0704.1981, résumé).