Le calcul d'une primitive d'une fonction est l'une des deux opérations de base de l'analyse et comme cette opération est délicate à effectuer, à l'inverse de la dérivation, des tables de primitives connues sont souvent utiles.
Nous savons qu'une fonction continue sur un intervalle admet une infinité de primitives et que ces primitives diffèrent d'une constante ; nous désignons par C une constante arbitraire qui peut seulement être déterminée si nous connaissons la valeur de la primitive en un point.
— appelé intégrale indéfinie de f — désigne l'ensemble de toutes les primitives d'une fonction f à une constante additive près.
Règles générales d'intégration
- Linéarité :
- relation de Chasles :
et en particulier :
- intégration par parties :
moyen mnémotechnique :
avec et dx implicite.
- intégration par changement de variable (si f et φ' sont continues) :
.
Primitives de fonctions simples
Plus généralement, une primitive n-ième de est :
- .
- et a ≠ 1 car ln(1) = 0.
Primitives de fonctions trigonométriques
Primitives de fonctions hyperboliques
Primitives de fonctions circulaires réciproques
Primitives de fonctions hyperboliques réciproques
Voir aussi
Bibliographie
Articles connexes
Lien externe
Calculateur automatique de primitive par Mathematica