Spectre d'ondes planes

La méthode du spectre d'ondes planes est une méthode d'analyse spectrale.

Introduction

La décomposition d'une onde de forme quelconque sur une base d'ondes planes est une opération usuelle dans différents domaines de la physique, par exemple en optique ou en mécanique quantique.

Dans certaines géométries de sources, il est fait appel au principe de Huygens pour obtenir le champ à longue, ou très longue distance : une surface d'onde donnée est considérée comme sources d'ondes sphériques dont la combinaison fournira le champ à l'endroit voulu.

La méthode du spectre d'ondes planes procède d'une tout autre manière, sans nécessiter d'appel à un principe supplémentaire. Elle apparaît singulièrement efficace si le champ source, à propager, est connu dans un plan.

Une simple transformée de Fourier bidimensionnelle mène à l'obtention d'une expression analytique valable en tout point de l'espace tridimensionnel. On retrouve ainsi en quelques lignes de calcul les approximations usuelles de Fresnel, ou de Fraunhofer, mais en plus, l'expression obtenue est satisfaisante pour le champ proche, ce que ne donne pas l'approche utilisant le principe de Huygens.

La méthode peut être appliquée dans de nombreux cas, où la source est effectivement plane. Par exemple dans le cas d'une fente source dans un écran plat ; en première approximation le champ incident sur l'écran est découpé à l'emporte-pièce, ce qui est usuellement fait. En dehors de cette difficulté — qui a son importance — le calcul est valide, pour chaque composante du champ vectoriel, s'il y a lieu, et ce à toute distance.

Aperçu mathématique

Soit un champ scalaire monochromatique de pulsation , satisfaisant à une équation de Helmholtz (une adaptation peut être réalisée pour l'équation de Schrödinger, ou autres équations de propagation, ou de diffusion) :

.

Une onde plane est une solution particulière cette équation. Une solution générale peut être écrite par linéarité de l'équation de Helmholtz comme une superposition d'ondes planes se propageant dans toutes les directions possibles dans le demi-espace .

Par hypothèse le champ est connu dans le plan , plan sur lequel on évalue la transformée de Fourier :

.

La transformée de Fourier du champ dans un plan situé à une cote est alors tout simplement :

.

Ainsi obtient-on, dans le plan quelconque, le champ par une simple transformation de Fourier inverse :

,

qui est la solution exacte.

Dans cette expression, les hautes fréquences spatiales () vont mener à une décroissance exponentielle pour l'argument de l'intégrale. Ces hautes fréquences spatiales caractérisent des détails fins du plan source qui ne seront donc visibles qu'en champ proche. Ces ondes planes particulières sont appelées des ondes évanescentes ou inhomogènes. À grande distance, la participation de ces ondes évanescentes devient négligeable. C'est ce qui limite de façon fondamentale la résolution des instruments optiques : l'information sur les variations spatiales rapides (de taille caractéristique inférieure à la longueur d'onde) d'un objet émettant de la lumière est contenue dans les évanescents. Il n'est donc pas possible à cause de la propagation elle-même, de faire l'image d'un objet de taille inférieure à la longueur d'onde de la lumière utilisée.

Le champ peut être évalué en utilisant la méthode de la phase stationnaire. Cette approximation mène pour de grandes distances aux formules de Fresnel (facteur d'obliquité inclus) ainsi qu'à celles de Fraunhofer pour de très grande distance.

Par exemple, dans le cas de l'approximation de Fraunhofer, on trouve :

,

l'amplitude en est proportionnelle à la transformée de Fourier en pour le vecteur d'onde .

Voir aussi

Articles connexes

Read other articles:

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

 

American politician (1780–1817) Edward HempsteadDelegate to theU.S. House of Representativesfrom the Missouri Territory'sat-large districtIn officeNovember 9, 1812 – September 17, 1814Preceded byConstituency establishedSucceeded byRufus Easton Personal detailsBorn(1780-06-03)June 3, 1780New London, Connecticut, U.S.DiedAugust 10, 1817(1817-08-10) (aged 37)St. Louis, Missouri, U.S.Political partyDemocratic-Republican Edward Hempstead (June 3, 1780 – August 10, 1817) was...

 

  هذه المقالة عن سقراط فيلسوف يوناني. لمعانٍ أخرى، طالع سقراط (توضيح). سقراط سقراط معلومات شخصية الميلاد 470 ق.مأثينا  الوفاة 399 ق.مأثينا  الإقامة أثينا الكلاسيكية  الجنسية يوناني عضو في بويل[1]  مشكلة صحية صرع  الزوجة زنتيب  الحياة العملية التلامذة الم�...

Isaac LevitanIssac Levitan, potret diri sendiri (1880)LahirIsaac Ilyich Levitan30 Agustus [K.J.: 18 Agustus] 1860Kibarty, Augustów Governorate, Ketsaran Polandia, Russian EmpireMeninggal4 Agustus [K.J.: 22 Juli] 1900 (usia 39)MoscowKebangsaanRussiaPendidikanMember Academy of Arts (1898)Dikenal atasLukisanKarya terkenalAutumn day. Sokolniki (1879)Over Eternal Peace (1894)Gerakan politikRealisme, Peredvizhniki, ImpresionismePenghargaanSilver Medal (1877)Patron(s)Pavel Tretyakov, Savva Mamonto...

 

Stasiun Tsurugasaka鶴ヶ坂駅Stasiun Tsurugasaka pada September 2009LokasiTsurugasaka Kawai 91-3, Aomori-shi, Aomori-ken 038-0045JepangKoordinat40°47′28.5″N 140°38′05.5″E / 40.791250°N 140.634861°E / 40.791250; 140.634861Koordinat: 40°47′28.5″N 140°38′05.5″E / 40.791250°N 140.634861°E / 40.791250; 140.634861Operator JR EastJalur■ Jalur Utama ŌuLetak473.4 km dari FukushimaJumlah peron2 peron sampingJumlah jalur2Inform...

 

Gaetano Auteri Auteri sulla panchina del Matera nel 2016 Nazionalità  Italia Calcio Ruolo Allenatore (ex attaccante) Squadra  Benevento Termine carriera 1992 - giocatore CarrieraSquadre di club1 1979-1981 Siracusa37 (4)1981-1984 Varese88 (20)1984-1986 Genoa29 (2)1986-1988 Monza64 (13)1988-1990 Palermo52 (12)1990-1991 Licata22 (4)1991-1992 Leonzio12 (3)Carriera da allenatore 1994-1995 Atletico CataniaPortieri1995-1996 Ragusa1998-2001...

Award ceremony for South Indian films 61st Filmfare Awards SouthMahesh Babu receiving Best Actor – Telugu Award at the Award distribution function from Tamannaah for his performance in the film Seethamma Vakitlo Sirimalle ChettuDate12 July 2014SiteChennai, Tamil Nadu, IndiaHosted byRahul RavindranChinmayiProduced byIdea CellularHighlightsBest PictureMyna (Kannada)Drishyam (Malayalam)Thanga Meenkal (Tamil)Attarintiki Daredi (Telugu)Most awardsAtharintiki Daaredi (four; Telugu)Kadal (four; Ta...

 

Ulla WiesnerBiographieNaissance 12 décembre 1940 (83 ans)WerlNationalité allemandeActivité ChanteuseAutres informationsLabel Polydor RecordsGenre artistique Schlagermodifier - modifier le code - modifier Wikidata Ulla Wiesner (née le 12 décembre 1940 à Werl) est une chanteuse allemande. Biographie Ulla Wiesner est de 1960 à 2002 chanteuse d'abord comme choriste de Botho-Lucas-Chor et jusqu'en 1964 aussi de Günter Kallmann. En 1964, elle a ses premiers succès en solo avec Charade...

 

The HonourablePeter CaruanaQC Ketua Menteri Gibraltar ke-6Masa jabatan17 Mei 1996 – 9 Desember 2011Penguasa monarkiElizabeth IIGubernurHugo WhiteRichard LuceDavid DurieDavid Blunt (Sementara)Francis RichardsPhilip Barton (Sementara)Robert FultonLeslie Pallett (Sementara)Adrian JohnsPendahuluJoe BossanoPenggantiFabian Picardo Informasi pribadiLahir15 Oktober 1956 (umur 67)GibraltarPartai politikDemokrat Sosial GibraltarSuami/istriCristina TriayAnak6Alma materQueen Mary, Univers...

US election 1982 United States Senate election in Massachusetts ← 1976 November 2, 1982 1988 →   Nominee Ted Kennedy Ray Shamie Party Democratic Republican Popular vote 1,247,084 784,602 Percentage 60.81% 38.26% County results Municipality resultsKennedy:      40–50%      50–60%      60–70%      70–80%      80–90%   &#...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

It's Okay, That's LovePoster promosi untuk It's Okay, That's LoveGenrePercintaan Komedi Drama medisDitulis olehNoh Hee-kyungSutradaraKim Kyu-taePemeranJo In-sung Gong Hyo-jinNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiLokasi produksiKorea Okinawa, JepangDurasiRabu dan Kamis pukul 21:55 (KST)Rumah produksiGT EntertainmentCJ E&M Film DivisionDistributorSBSRilis asliJaringanSBSRilis23 Juli (2014-07-23) –11 September 2014 (2014-9-11) It's Okay, Tha...

Para otros usos de este término, véase ¿Quién teme a Virginia Woolf?. Who's Afraid of Virginia Woolf?Título ¿Quién teme a Virginia Woolf? (España)¿Quién le teme a Virginia Woolf?(Hispanoamérica)Ficha técnicaDirección Mike NicholsProducción Ernest LehmanGuion Ernest LehmanBasada en ¿Quién teme a Virginia Woolf? de Edward AlbeeMúsica Alex NorthFotografía Haskell WexlerMontaje Sam O'SteenProtagonistas Elizabeth TaylorRichard BurtonGeorge SegalSandy Dennis Ver todos los crédit...

 

Schloss Hof Schloss Hof adalah sebuah istana yang terletak di Austria, tepatnya di dekat perbatasan dengan Slowakia. Istana ini sebelumnya dimiliki oleh Pangeran Eugene dari Savoia; ia membeli istana ini pada tahun 1726. Ia menugaskan arsitek Johann Lukas von Hildebrandt untuk memperbesar istana ini menjadi istana bergaya Barok pada tahun 1729. Ia menggunakan tempat ini untuk berburu, dan di dalam wasiatnya ia mewariskan istana ini kepada kemenakannya. Belakangan istana ini dibeli oleh Maria ...

 

List of leading WWII commanders This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Commanders of World War II – news · newspapers · books · scholar · JSTOR (M...

Language within the Macro-Jê stock OfayéNative toBrazilRegionMato Grosso do SulEthnicity60 Ofayé people (2006)[1]Native speakers2 (2005)[1]Language familyMacro-Jê OfayéLanguage codesISO 639-3opyGlottologofay1240ELP1740Ofayé The Ofayé or Opaye language, also Ofaié-Xavante, Opaié-Shavante, forms its own branch of the Macro-Jê languages. It is spoken by only a couple of the small Ofayé people, though language revitalization efforts are underway. Grammatical d...

 

Bar that does not serve alcohol Fitzpatricks, a temperance bar in Rawtenstall, England, that was established in 1890 A temperance bar, also known as an alcohol-free bar, sober bar, or dry bar, is a type of bar that does not serve alcoholic beverages.[1][2][3] An alcohol-free bar can be a business establishment or located in a non-business environment or event, such as at a wedding.[4] Alcohol-free bars typically serve non-alcoholic beverages, such as non-alcoho...

 

Local authority in Greater London, England Lambeth Council redirects here. For the 1900 to 1965 council, see Lambeth Metropolitan Borough Council. Lambeth London Borough CouncilCoat of armsCouncil logoTypeTypeLondon borough LeadershipMayorJohn-Paul Ennis, Labour since 24 April 2024[1] LeaderClaire Holland, Labour since 2 June 2021 Chief ExecutiveBayo Dosunmu since July 2022[2] StructureSeats63 councillors[3]Political groups Administration (58)   Labour (58...

Questa voce o sezione sull'argomento centri abitati della Russia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Disambiguazione – Se stai cercando altri significati, vedi Tambov (disambigua). Tambovcittà (gorod)Тамбо́в Tambov – VedutaIl Monastero di Nostra Signora di Kazan. LocalizzazioneStato Russia Circondario federaleCentrale Soggett...

 

Jurisdiction and office of an ecclesiastical patriarch Not to be confused with Patriarchy or Patriate. Eastern patriarchates of the Pentarchy, after the Council of Chalcedon (451) Patriarchate (/ˈpeɪtriɑːrkɪt, -keɪt/, UK also /ˈpætri-/;[1] Ancient Greek: πατριαρχεῖον, patriarcheîon) is an ecclesiological term in Christianity, designating the office and jurisdiction of an ecclesiastical patriarch. According to Christian tradition three patriarchates were establish...