Plus longue sous-séquence commune

En informatique théorique, la plus longue sous-séquence commune à deux suites, ou deux chaînes de caractères, est une sous-suite extraite des deux suites, et de taille maximum. La résolution de ce problème peut être obtenue par programmation dynamique.

La généralisation à un nombre arbitraire de suites est un problème NP-difficile[1] : le temps d'exécution de tout algorithme est exponentiel en le nombre de séquences.

Exemple

Pour les deux séquences de caractères suivantes :

  • « abcde »,
  • « ceij »,

la plus longue sous-séquence commune est « ce ».

Dans ce problème, il est nécessaire que les éléments communs soient dans le même ordre dans les différentes séquences, mais pas qu’ils soient obligatoirement consécutifs : « e » n’est pas consécutif à « c » dans la première séquence.

Algorithme par force brute

On constate par dénombrement qu'il existe sous-séquences pour une chaîne de longueur . Les essayer toutes par force brute pour trouver la plus longue qui soit une sous-séquence d'une autre chaîne a donc une complexité exponentielle, ce qui n'est pas souhaitable en pratique.

Résolution en temps polynomial pour deux suites

Une telle sous-séquence peut être obtenue par un algorithme de programmation dynamique dont le temps d'exécution est proportionnel au produit des longueurs des deux séquences[2].

Structure d'une solution

Il est possible de ramener le problème de recherche de plus longue sous séquence commune (PLSC) entre deux chaînes données à une recherche entre deux chaînes de taille inférieure grâce au théorème suivant (où désigne les premiers caractères de la séquence )[2]:

Théorème — Soit et deux séquences, et soit une plus longue sous-séquence commune quelconque de et . On a alors :

  • Si alors et de plus est une PLSC de et  ;
  • Si alors si on a qui est une PLSC de et  ;
  • Si alors si on a qui est une PLSC de et .

Les trois cas , et sont exhaustifs, ce qui permet bien de se ramener à un problème de taille inférieure.

Longueur des plus longues sous-séquences communes

On crée un tableau à deux dimensions dans lequel chaque case est destiné à contenir la longueur des PLSCs entre et . On peut alors calculer de proche en proche pour chaque couple d'indice et . Du théorème précédent découle en effet la formule[2]:

Le calcul du contenu des cases de peut être effectué avec une complexité , car le contenu de chaque case est calculable à partir des cases précédente en [2].

Obtention d'une plus longue sous-séquence commune

La formule précédente permet de calculer de proche en proche les cases de . On peut reconstituer une plus longue sous-séquence commune grâce à lui.

Pour cela on effectue un parcours depuis suivant la règle suivante

Depuis une case de valeur :

  • Si , on passe à la case de valeur et on ajoute ce caractère () au début de la PLSC en construction.
  • Si ,
    • Si , on passe indifféremment à la case ou .
    • Si , on passe à la case
    • Si , on passe à la case

Un exemple de parcours est donné par le tableau suivant, grâce auquel on déduit que MJAU est une plus longue sous-séquence commune à MZJAWXU et XMJYAUZ :

0 1 2 3 4 5 6 7
Ø M Z J A W X U
0 Ø 0 0 0 0 0 0 0 0
1 X 0 0 0 0 0 0 1 1
2 M 0 1 1 1 1 1 1 1
3 J 0 1 1 2 2 2 2 2
4 Y 0 1 1 2 2 2 2 2
5 A 0 1 1 2 3 3 3 3
6 U 0 1 1 2 3 3 3 4
7 Z 0 1 2 2 3 3 3 4

Complexité de l'algorithme

Le calcul du contenu des cases de peut être effectué avec une complexité , car le contenu de chaque case est calculable à partir des cases précédente en [2].

Une fois connu, l'obtention d'une PLSC a une complexité [2].

Notes et références

  1. David Maier, « The Complexity of Some Problems on Subsequences and Supersequences », Journal of the ACM, vol. 25, no 2,‎ , p. 322-336 (DOI 10.1145/322063.322075 Accès libre, S2CID 16120634)
  2. a b c d e et f Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest et Clifford Stein, Introduction à l'algorithmique, Dunod, [détail de l’édition], chapitre 15.4, Programmation dynamique : plus longue sous-séquence commune.

Bibliographie complémentaire

  • Masashi Kiyomi, Takashi Horiyama et Yota Otachi, « Longest common subsequence in sublinear space », Information Processing Letters, vol. 168,‎ , article no 106084 (DOI 10.1016/j.ipl.2020.106084)
  • Hideo Bannai, Tomohiro I et Dominik Köppl, « Longest bordered and periodic subsequences », Information Processing Letters, vol. 182,‎ , article no 106398 (DOI 10.1016/j.ipl.2023.106398)

Voir aussi