Outre la phosphorylation au niveau du substrat, les cellules peuvent produire de l'ATP par phosphorylation oxydative. Il s'agit cependant d'un processus totalement différent, dans lequel l'énergie provient de la chaîne respiratoire et le couplage avec la phosphorylation de l'ADP est réalisé par chimiosmose. Si l'essentiel de l'ATP d'une cellule est produit par la phosphorylation oxydative en environnement aérobie, la phosphorylation au niveau substrat permet de fournir rapidement une certaine quantité d'ATP en l'absence d'oxygène, comme c'est le cas par fermentation lactique dans le muscle en condition anaérobie transitoire.
Au cours de la troisième phase de la glycolyse — celle où l'énergie investie dans les phosphorylations préliminaires est récupérée sous forme d'ATP — deux réactions font intervenir une phosphorylation au niveau du substrat :
La créatine kinase (EC2.7.3.2) est un autre exemple de phosphorylation au niveau du substrat, cette enzyme étant capable de phosphoryler l'ADP en ATP tout en convertissant la phosphocréatine en créatine : cette dernière réaction est accompagnée d'une variation d'enthalpie libre standard de ΔG°′ = −43,1kJ·mol-1[2], ce qui permet la formation d'ATP.
Cependant, deux enzymes de la matrice mitochondriale contribuent à la production d'ATP par phosphorylation au niveau du substrat, c'est-à-dire de manière totalement indépendante de la force proton-motrice générée par la chaîne respiratoire :
La première de ces deux enzymes intervient dans le cycle de Krebs et on pense qu'elle contribue aux échanges de potentiel de phosphorylation entre le cytosol et la matrice mitochondriale[3],[4],[5],[6],[7]. La seconde est peut-être la seule enzyme susceptible de pouvoir maintenir un certain taux d'ATP dans la matrice mitochondriale en l'absence de la force proton-motrice générée par la chaîne respiratoire, par exemple au cours d'un épisode d'hypoxie temporaire.
↑(en) Geoffrey M. Cooper, The Cell – A Molecular Approach, Sunderland (MA), Sinauer Associates, , 2e éd., 689 p. (ISBN0-87893-106-6, lire en ligne), The Generation of ATP from Glucose
↑(en) David O. Lambeth, Kristin N. Tews, Steven Adkins, Dean Frohlich and Barry I. Milavetz, « Expression of Two Succinyl-CoA Synthetases with Different Nucleotide Specificities in Mammalian Tissues », Journal of Biological Chemistry, vol. 279, no 35, , p. 36621-36624 (PMID15234968, DOI10.1074/jbc.M406884200, lire en ligne)
↑(en) J. H. Ottaway, J. A. McClellan et C.L. Saunderson, « Succinic thiokinase and metabolic control », International Journal of Biochemistry, vol. 13, no 4, , p. 401-410 (PMID6263728, DOI10.1016/0020-711X(81)90111-7, lire en ligne)
↑(en) D. F. Wilson, M. Erecińska et V. L. Schramm, « Evaluation of the relationship between the intra- and extramitochondrial [ATP]/[ADP] ratios using phosphoenolpyruvate carboxykinase », Journal of Biological Chemistry, vol. 258, no 17, , p. 10464-10473 (PMID6885788, lire en ligne)
↑(en) James D. Johnson, James G. Mehus, Kristin Tews, Barry I. Milavetz et David O. Lambeth, « Genetic Evidence for the Expression of ATP- and GTP-specific Succinyl-CoA Synthetases in Multicellular Eucaryotes », Journal of Biological Chemistry, vol. 273, no 42, , p. 27580-27586 (PMID9765291, DOI10.1074/jbc.273.42.27580, lire en ligne)