La recherche des pentaquarks (et des tétraquarks) est devenue un sujet d’étude à part entière en physique expérimentale[2], et plusieurs pentaquarks ont été produits au LHC, de type ccqqq[a],[3].
Toutefois, un nouveau groupe, celui des baryons exotiques, a été introduit dans la classification des particules à la suite de leur découverte. Ce groupe contient les pentaquarks et d'autres particules similaires.
Plusieurs expériences auraient mis en évidence l'existence des pentaquarks :
le aurait été le premier à être observé, en 2003, et il possède une masse d'environ 1 540 MeV. Ces résultats sont cependant controversés. Le pentaquark aurait été observé pour la première fois le par Takashi Nakano(ja) de l'université d'Osaka. L'expérience fut confirmée par Kenneth Hicks du Jefferson Lab. L'annonce officielle fut publiée dans la revue Physical Review Letters le [5]. L'expérience consistait à faire interagir un rayon gamma à haute énergie avec un proton et un neutron, créant un méson K− et un pentaquark , le . Ce dernier subsista durant environ 10−20seconde avant de se transformer en un méson K+ et un neutron.
L'article de 2017 précise : « Expérience SPring-8(en) au Japon, une particule interprétée comme un pentaquark de masse 1,6 fois plus massive qu'un proton (conforme au calcul de 1997) et d'une durée de vie de l'ordre de 10−23seconde. Il est aujourd'hui très peu probable que soit bien un pentaquark[2] ».
Ces résultats ont été mis en doute en 2005 par les chercheurs du Jefferson Lab qui n'ont pas réussi à détecter la particule, malgré une précision statistique dix fois supérieure aux recherches entreprises par leur laboratoire et d'autres en 2004. De plus, en analysant le précédent enregistrement qui les avait conduits à affirmer l'existence du pentaquark, les physiciens[7] conclurent que le signal ne se distinguait que très faiblement du bruit de fond.
Le , le CERN annonce officiellement que les données fournies par le détecteur LHCb du Grand collisionneur de hadrons ont permis d'observer des particules composées de cinq quarks (deux up, un down, un charm et un anti-charm) et de charge +1, lors de la désintégration du baryon [8],[9],[10].
Le , la collaboration LHCb publie la découverte de trois nouveaux états[b] d'un même pentaquark, de masses 4 312, 4 440 et 4 457 MeV[11]. Tous trois sont constitués de deux quarks up, un down, un charm et un anticharm, mais qui seraient organisés différemment.
Caractéristiques et structure
L'organisation interne des pentaquarks est sujette à débat.
Pour certains théoriciens, un pentaquark est simplement, comme un baryon ou un méson, un ensemble non structuré de quarks liés par l'échange de gluons[12].
Une troisième hypothèse, dite « moléculaire », est qu'un pentaquark est constitué d'un baryon (trois quarks liés par l'échange de gluons) et d'un méson (un quark et un antiquark liés par l'échange de gluons), liés par l'échange de mésons pi[12]. La découverte par l'expérience LHCb de trois nouveaux états[b] d'un même pentaquark[11] conforte cette hypothèse : d'une part les masses correspondant à ces trois états sont légèrement inférieures à la somme des masses d'un baryon et d'un méson (ou d'un méson dans un état excité, selon les cas), signe d'une liaison baryon-méson, et d'autre part l'enfermement du quark charmé et de son antiparticule dans deux ensembles séparés (le baryon et le méson, respectivement) expliquerait qu'ils ne s'annihilent pas.
Liste
Les pentaquarks observés ou prédits par la théorie sont :
↑(en) Dmitri Diakonov, Victor Petrov et Maxim Polyakov, « Exotic anti-decuplet of baryons: prediction from chiral solitons », Zeitschrift für Physik A Hadrons and Nuclei, vol. 359, no 3, , p. 305–314 (ISSN1431-5831, DOI10.1007/s002180050406, lire en ligne, consulté le )
↑Thomas D. Cohen, Paul M. Hohler et Richard F. Lebed, « On the existence of heavy pentaquarks: The large ${N}_{c}$ and heavy quark limits and beyond », Physical Review D, vol. 72, no 7, , p. 074010 (DOI10.1103/PhysRevD.72.074010, lire en ligne, consulté le )