Pötzleinsdorfer SK
|
Read other articles:
Live and Let Die Sampul versi cetakan ulang tahun 2023, oleh penerbit HarperCollins.PengarangIan FlemingNegaraBritania RayaBahasaInggrisSeriJames BondGenreFiksi mata-mataPenerbitJonathan Cape (edisi pertama)Tanggal terbit5 April 1954 (sampul keras)Halaman234Didahului olehCasino Royale (1953) Diikuti olehMoonraker (1955) Live and Let Die merupakan novel James Bond kedua yang ditulis oleh Ian Fleming. Pertama kali novel ini diterbitkan adalah pada 5 April 1954 oleh pen...
1885 1894 Élection présidentielle française de 1887 3 décembre 1887 Corps électoral et résultats Votants au 1er tour 849 Votes exprimés au 1er tour 849 Votants au 2d tour 827 Votes exprimés au 2d tour 827 Sadi Carnot – Union des gauches Voix au 1er tour 303 35,69 % Voix au 2e tour 616 74,49 % Félix Gustave Saussier – Républicain conservateur Voix au 1er tour 148 17,43 % Voix au 2e tour 188 22,73 % Jules Ferry �...
London, UK-based television company The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: AMC Networks International UK – news...
العلاقات النيجيرية الهايتية نيجيريا هايتي نيجيريا هايتي تعديل مصدري - تعديل العلاقات النيجيرية الهايتية هي العلاقات الثنائية التي تجمع بين نيجيريا وهايتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة ن�...
Think tank in Seongnam, South Korea Korean Academy of Science and TechnologyAgency overviewFormedJune 7, 1995HeadquartersSeongnam, Gyeonggi-do, South KoreaWebsitewww.kast.or.kr Korean Academy of Science and TechnologyHangul한국과학기술한림원Hanja韓國科學技術翰林院Revised RomanizationHanguk Gwahak Gisul HallimwonMcCune–ReischauerHan'guk Kwahak Kisul Hallimwŏn The Korean Academy of Science and Technology (KAST) is South Korea's highest academy of science and serves as an in...
English footballer (born 1992) Nick Pope Pope playing for Charlton Athletic in 2016Personal informationFull name Nicholas David PopeDate of birth (1992-04-19) 19 April 1992 (age 32)Place of birth Soham, EnglandHeight 6 ft 3 in (1.91 m)[note 1]Position(s) Goalkeeper[3]Team informationCurrent team Newcastle UnitedNumber 22Youth career200?–2008 Ipswich TownSenior career*Years Team Apps (Gls)2008–2011 Team Bury[a] 16 (0)2010–2011 Bury Town 5 (0)20...
Correct conduct in religions This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Orthopraxy – news · newspapers · books · scholar · JSTOR (September 2008) (Learn how and when to remove this message) In the study of religion, orthopraxy is correct conduct, both ethical and liturgical, as opposed to faith or grace...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...
New York City government agency Taxi and Limousine CommissionCommission overviewFormedMarch 2, 1971; 53 years ago (1971-03-02)JurisdictionNew York CityHeadquarters33 Beaver Street, New York City, New York, U.S.Employees666 (2020[update])[1]Annual budget$68.8 million (2016)Commission executiveDavid Do, Commissioner and ChairKey documentsNew York City CharterLocal Law 12 of 1971Websitewww.nyc.gov/tlc The New York City Taxi and Limousine Commission (NYC TLC) is ...
Rambai Baccaurea motleyana Status konservasiRisiko rendahIUCN183247890 TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladSuperrosidaeKladrosidsKladfabidsOrdoMalpighialesFamiliPhyllanthaceaeTribusAntidesmeaeGenusBaccaureaSpesiesBaccaurea motleyana Müll.Arg., 1866 lbs Rambai (Baccaurea motleyana) adalah sejenis buah-buahan dan tumbuhan penghasilnya yang tumbuh liar atau setengah liar di kebun-kebun Asia Tenggara, seperti Thaila...
Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...
Overview of liberalism in Hong Kong Part of a series onLiberalism Schools Classical Conservative Cultural Democratic Feminist Equity Green Internationalist Muscular National Neo Ordo Radical Religious Christian Catholic Islamic Jewish Secular Social Techno Third Way Principles Consent of the governed Due process Democracy Economic liberalism Economic globalization Equality Gender Legal Federalism Freedom Economic Market Trade Press Religion Speech Harm principle Internationalism Invisible han...
Pelias (kanan) dan iason. Pelias (bahasa Yunani: Πελίας) adalah raja Iolkus dalam mitologi Yunani. Pelias adalah anak Tiro dan Poseidon. Istrinya kemungkinan adalah Anaxibia, putri dari Bias, atau Filomakhe, anak Amfion. Pelias adalah ayah dari Akastus, Pisidike, Alkestis, Pelopia, Hippothoe, Asteropia, Antinoe dan Medusa.[1] Referensi ^ Greek Mythology Link (Carlos Parada) - Pelias 1 Pranala luar (Inggris) Pelias di Encyclopedia Mythica Diarsipkan 2010-04-09 di Wayback Machine....
Overview of the events of the 1440s in art List of years in art (table) … 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 … In music 1437 1438 1439 1440 1441 1442 1443 Art Archaeology Architecture Literature Music Philosophy Science +... 1430s . 1440s in art . 1450s Other events: 1440s . Art timeline The decade of the 1440s in art involved some significant events. Events 1440: Donatello completes his series of sculptures for Prato ...
Untuk tempat lain yang bernama sama, lihat Kebonagung. KebonagungKecamatanNegara IndonesiaProvinsiJawa TimurKabupatenPacitanPopulasi • Total−30,000 jiwa jiwaKode Kemendagri35.01.05 Kode BPS3501050 Luas-+ 300 Km2Desa/kelurahan16 desa Pantai Kebonagung Kebonagung merupakan salah satu kecamatan di Kabupaten Pacitan, Jawa Timur. Legenda terbentuknya kabupaten konon bermula dari sini di mana terdapat makam seorang tokoh bernama Ki Ageng Buwono Keling. Batas wilayah Peta Kecamata...
XIII campionati mondiali di nuoto 2009 Logo della competizione Competizione Campionati mondiali di nuoto Sport Nuoto Nuoto di fondo Tuffi Nuoto sincronizzato Pallanuoto Edizione 13ª Organizzatore FINA Date 18 luglio - 2 agosto 2009 Luogo Roma Partecipanti 2556 Nazioni 185 Impianto/i Stadio Olimpico del NuotoOstia Sito web roma09.it Statistiche Miglior medagliato Michael Phelps (5/1/0) Miglior nazione Stati Uniti (11/11/7) Gare 65 Cronologia della competizione 2007 2011 Manua...
·This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (June 2021) 2017 Social Democratic Party of Finland leadership election ← 2017 4 February 2017 Candidate Antti Rinne Timo Harakka Tytti Tuppurainen Popular vote 281 159 55 Percentage 56.8% 32.1% 11.1% Previous leader of the Social Democratic Party Jutta Urpilainen Elected leader of the Social Democratic Party An...
イタリアの国旗用途及び属性 ?縦横比 2:3制定日 1946年6月19日使用色 緑(パントーン17-6153TC) 白(パントーン11-0601TC) 赤(パントーン18-1662TC)テンプレートを表示 イタリアの国旗は、緑・白・赤の縦三色旗である。イタリア三色旗(Tricolore italiano)とも、単に三色旗(トリコローレ:Tricolore)とも呼ばれる。この旗の意匠はフランスの国旗(トリコロール)を起源とし、1...
1982 pinball machine Haunted HouseManufacturerGottliebRelease dateOctober 1982SystemSystem 80DesignJohn OsborneArtworkTerry DoerzaphProduction run6,385 Haunted House is a pinball game released in October 31 1982 by Gottlieb. It was the first game with three playfields that the ball can move between, including one below the main playing surface. Haunted House was designed by John Osborne, with artwork by Terry Doerzaph. It is part of Gottlieb’s “System 80” series of pinball machines.[...
Grafico del logaritmo naturale del fattoriale In matematica, si definisce fattoriale di un numero naturale n {\displaystyle n} , indicato con n ! {\displaystyle n!} , il prodotto dei numeri interi positivi minori o uguali a tale numero. In formula: n ! := ∏ k = 1 n k = 1 ⋅ 2 ⋅ 3 ⋯ ( n − 1 ) ⋅ n {\displaystyle n!:=\prod _{k=1}^{n}k=1\cdot 2\cdot 3\cdots (n-1)\cdot n} per la convenzione del prodotto vuoto si definisce inoltre 0 ! := 1 {\displaystyle 0!:...