L'oxyde de tantale(V), ou pentoxyde de tantale, est un composé chimique de formule Ta2O5. Il se présente sous la forme d'un solide blanc inodore et insoluble dans tous les solvants mais qui peut être attaqué par des bases fortes et l'acide fluorhydrique HF(aq). Il s'agit d'un matériau inerte qui a un indice de réfraction élevé et un coefficient d'absorption faible, ce qui en fait un matériau utilisé pour les revêtements[4]. Il est également très utilisé pour la fabrication de condensateurs en raison de sa permittivité élevée.
Sources et raffinage
On trouve le tantale dans la tantalite et la columbite — le columbium étant une dénomination obsolète du niobium — présents dans les pegmatites, des roches ignées. Les mélanges de tantalite et de columbite sont appelés coltan. La microlite et le pyrochlore contiennent respectivement de l'ordre de 70 et 10 % de tantale.
Les minerais de tantale contiennent généralement d'importantes quantités de niobium, qui est lui-même un métal de valeur, de sorte que ces deux métaux sont extraits à des fins commerciales. L'ensemble du procédé relève de l'hydrométallurgie et débute par une étape de lixiviation dans laquelle le métal est traité avec de l'acide fluorhydrique et de l'acide sulfurique pour produire des hydrogénofluorures solubles dans l'eau afin de permettre la séparation de ces métaux des diverses impuretés non métalliques contenues dans les roches :
Les hydrogénofluorures de tantale et de niobium sont éliminés de la solution aqueuse par extraction liquide-liquide en utilisant des solvants organiques tels que la cyclohexanone ou la méthylisobutylcétone. Cette étape permet d'éliminer aisément les différentes impuretés métalliques telles que le fer et le manganèse qui restent dans la phase aqueuse sous forme de fluorures. La séparation du tantale et du niobium est alors réalisée par ajustement du pH. Le niobium exige une acidité plus élevée pour rester en solution et peut donc être éliminé sélectivement par extraction dans de l'eau moins acide. La solution d'hydrogénofluorure de tantale pur est ensuite neutralisée avec l'ammoniaque pour donner de l'hydroxyde de tantale(V) Ta(OH)5 qui peut être finalement calciné en oxyde de tantale(V) Ta2O5 :
La structure cristalline de l'oxyde de tantale(V) a été quelque peu discutée. Le matériau massif est désordonné[5], étant amorphe ou polycristallin. Les monocristaux sont difficiles à faire croître. L'étude par cristallographie aux rayons X s'est limitée à la diffraction de poudres, ce qui fournit moins d'informations structurelles. On a identifié au moins deux polymorphes : une forme à basse température, connue sous le nom de L- ou de β-Ta2O5, et une forme à haute température appelée H- ou α-Ta2O5. La transition entre ces deux formes, qui se déroule de 1 000 à 1 360 °C, est lente et réversible, les deux formes coexistant entre ces deux températures[5]. Ces deux polymorphes sont constitués de chaînes construites à partir d'octaèdres TaO6 et de bipyramides pentagonales TaO7 partageant une arête et leurs sommets opposés[6]. Le système cristallin est orthorhombique, le groupe d'espace du β-Ta2O5 étant Pna2 dans les deux cas d'après une analyse par diffractométrie de rayons X à cristal unique[7]. Une forme haute pression a également été publiée, dans laquelle les atomes de tantale adoptent une géométrie de coordinence 7 pour donner une structure monoclinique (groupe d'espace C2)[8].
Il est difficile d'obtenir un matériau ayant une structure homogène, ce qui a conduit à publier des propriétés variables pour l'oxyde de tantale(V). Ta2O2 est un isolant électrique ayant une largeur de bande interdite dont la valeur publiée varie entre 3,8 et 5,3 eV selon le mode de production[9],[10],[11]. D'une manière générale, plus le matériau est amorphe et plus sa bande interdite est large. Il convient de noter que les valeurs expérimentales sont significativement plus élevées que les valeurs calculées à partir de modèles informatiques (2,3 à 3,8 eV)[12],[13],[14].
La permittivité de l'oxyde de tantale(V) est de l'ordre de 25[15], bien que des valeurs supérieures à 50 ont également été publiées[16]. Ce matériau est généralement considéré comme un diélectrique high-κ.
↑ a et bEntrée « Tantalum(V) oxide » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais), accès le 16 octobre 2013 (JavaScript nécessaire)
↑
(en) Frederick Fairbrother, « The Chemistry of Niobium and Tantalum », Elsevier Publishing Company (1967), pp. 1–28, New York. (ISBN978-0-444-40205-9).
↑ a et b(en) Charlotta Askeljung, Bengt-Olov Marinder et Margareta Sundberg, « Effect of heat treatment on the structure of L-Ta2O5:: a study by XRPD and HRTEM methods », Journal of Solid State Chemistry, vol. 176, no 1, , p. 250-258 (lire en ligne)DOI10.1016/j.jssc.2003.07.003
↑(en) N. C. Stephenson et R. S. Roth, « Structural systematics in the binary system Ta2O5-WO3. V. The structure of the low-temperature form of tantalum oxide L-Ta2O5 », Acta Crystallographica Section B – Structural Crystallography and Crystal Chemistry, vol. 27, no 5, , p. 1037-1044 (lire en ligne)DOI10.1107/S056774087100342X
↑(en) G. M. Wolten et A. B. Chase, « Single-crystal data for β Ta2O5 and A KPO3 », Zeitschrift für Kristallographie - Crystalline Materials, vol. 129, nos 5-6, , p. 365-368 (lire en ligne)DOI10.1524/zkri.1969.129.5-6.365
↑(en) I. P. Zibrov, V. P. Filonenko, M. Sundberg et P.-E. Werner, « Structures and phase transitions of B-Ta2O5 and Z-Ta2O5: two high-pressure forms of Ta2O5 », Acta Crystallographica Section B – Structural Science, vol. 56, no 4, , p. 659-665 (lire en ligne)DOI10.1107/S0108768100005462
↑(en) Kaupo Kukli, Jaan Aarik, Aleks Aidla, Oksana Kohan, Teet Uustare et Väino Sammelselg, « Properties of tantalum oxide thin films grown by atomic layer deposition », Thin Solid Films, vol. 260, no 2, , p. 135-142 (lire en ligne)DOI10.1016/0040-6090(94)06388-5
↑(en) R. M. Fleming, D. V. Lang, C. D. W. Jones, M. L. Steigerwald, D. W. Murphy, G. B. Alers, Y.-H. Wong, R. B. van Dover, J. R. Kwo et A. M. Sergent, « Defect dominated charge transport in amorphous Ta2O5 thin films », Journal of Applied Physics, vol. 88, no 2, , p. 850 (lire en ligne)DOI10.1063/1.373747
↑(en) Prakash A. Murawala, Mikio Sawai, Toshiaki Tatsuta, Osamu Tsuji, Shizuo Fujita1 et Shigeo Fujita, « Structural and Electrical Properties of Ta2O5 Grown by the Plasma-Enhanced Liquid Source CVD Using Penta Ethoxy Tantalum Source », Japanese Journal of Applied Physics, vol. 32, no 1, , p. 368-375 (lire en ligne)DOI10.1143/JJAP.32.368
↑(en) R. Ramprasad, « First principles study of oxygen vacancy defects in tantalum pentoxide », Journal of Applied Physics, vol. 94, no 9, , p. 5609 (lire en ligne)DOI10.1063/1.1615700
↑(en) H. Sawada et K. Kawakami, « Electronic structure of oxygen vacancy in Ta2O5 », Journal of Applied Physics, vol. 86, no 2, , p. 956 (lire en ligne)DOI10.1063/1.370831
↑(en) Ramy Nashed, Walid M. I. Hassan, Yehea Ismailc et Nageh K. Allam, « Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta2O5) », Physical Chemistry Chemical Physics, vol. 15, no 5, , p. 1352-1357 (lire en ligne)DOI10.1039/C2CP43492J
↑(en) V. Macagno et J.W. Schultze, « The growth and properties of thin oxide layers on tantalum electrodes », Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 180, nos 1-2, , p. 157-170 (lire en ligne)DOI10.1016/0368-1874(84)83577-7
↑(en) M. Hiratani, S. Kimura, T. Hamada, S. Iijima et N. Nakanishi, « Hexagonal polymorph of tantalum–pentoxide with enhanced dielectric constant », Applied Physics Letters, vol. 81, no 13, , p. 2433 (lire en ligne)DOI10.1063/1.1509861
↑(en) Anatoly Agulyansky, « Potassium fluorotantalate in solid, dissolved and molten conditions », Journal of Fluorine Chemistry, vol. 123, no 2, , p. 155-161 (lire en ligne)DOI10.1016/S0022-1139(03)00190-8
↑(en) S. Ezhilvalavan et T.Y. Tseng, « Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application - a review », Journal of Materials Science: Materials in Electronics, vol. 10, no 1, , p. 9-31
↑
(en) Solomon Musikant, "Optical Glas Composition". Optical Materials: An Introduction to Selection and Application (1985), p. 28, CRC Press. (ISBN978-0-8247-7309-0)