Ces études ont été effectuées afin d'estimer les effets d'un engin nucléaire indépendamment par :
Geoffrey Ingram Taylor pour le Royaume-Uni en juin 1941[3],
John von Neumann pour les États-Unis, également en juin 1941[4],
Leonid Sedov, à pareille époque, pour l'URSS[5]. La publication de ses travaux date de 1946[6].
La théorie
Cette théorie décrit les effets d'une explosion, donc de la création et de la propagation d'un choc et d'un écoulement associé, à partir d'une distance où le détail de la source ne joue plus de rôle et où celle-ci peut être entièrement décrite par une énergie issue du point en .
La propagation se fait dans une atmosphère pour laquelle on peut prendre compte tenu de la valeur importante derrière le choc créé . Il n'en va pas de même pour la masse volumique : en effet les relations de Rankine-Hugoniot prédisent une limite à la masse volumique
où est l'indice adiabatique du milieu ( pour l'air à basse température).
On suppose que le paramètre pertinent est le seul nombre adimensionnel possible pour ce problème où interviennent les variables . Ce nombre est
.
En particulier ceci est vrai pour le rayon de propagation
D'où la vitesse de propagation
Les relations de Rankine-Hugoniot permettent de calculer les quantités en amont du choc
La résolution des équations d'Euler est assez longue[6]. On peut la simplifier à partir de la conservation de l'énergie. La relation entre et peut être déduite directement de la conservation de l'énergie. La solution étant auto-semblable l'énergie à l'intérieur de la sphère de rayon quelconque, grossissant à la vitesse , est constante. L'énergie qui quitte la sphère de rayon dans l'intervalle du fait de la vitesse de gaz est où est l'enthalpie volumique du gaz. Dans cet intervalle de temps le rayon croît avec la vitesse pour arriver à une énergie où est l'énergie interne par unité de volume. D'où
Les équations de continuité et de conservation de l'énergie deviennent
En exprimant et comme fonctions de seulement et en intégrant on obtient
où
La constante qui exprime la position du choc peut être déduite de la conservation de l'énergie
On obtient
On peut alors revenir aux variables physiques
et en déduire la température
Comportement asymptotique dans la partie centrale
L'analyse de la solution permet de connaître le comportement asymptotique pour lequel la masse volumique décroît rapidement derrière le choc et la pression vers une valeur limite (voir figure)
On rappelle que dépend du temps comme . Dans les variables physiques
La vitesse varie linéairement dans la partie centrale.
et son comportement asymptotique est donné par
Comportement en temps long
L'analyse ci-dessus n'est plus valide lorsque , phase dans laquelle se forme une partie en dépression en aval du choc. Dans ce cas on ne peut plus définir un seul nombre adimensionnel caractéristique et l'auto-similarité n'est plus vérifiée. Il existe une méthode pour aller plus loin dans les méthodes analytiques[9] mais de nos jours on fait plutôt appel au calcul numérique[10],[11],[12]
Solution numérique pour diverses géométries
Des calculs numériques ont permis d'établir une loi valable pour toute géométrie (plane, cylindrique, sphérique)[13] :
où B est un coefficient dépendant de la géométrie :
sphérique
cylindrique
plan
7/5
5.33
3.94
1.22
5/3
3.08
2.26
0.678
En géométrie cylindrique
Le problème de la ligne explosive a été résolu par Leonid Sedov, A. Sakurai[9] et S. C. Lin[14]. Le nombre adimensionnel pertinent est ici
D'où le rayon de propagation :
Pour l'approximation numérique décrite ci-dessus donne
La vitesse de propagation s'écrit :
On peut en déduire le saut de pression en utilisant une approximation des relations de Rankine-Hugoniot :
La surpression est proportionnelle à l'énergie et décroît avec le carré de la distance à la source.
Références
↑(en) Bluman, G. W. et Cole, J. D., Similarity methods for differential equations, vol. 13, Springer,
↑(en) Deakin, M. A., « GI Taylor and the Trinity test », International Journal of Mathematical Education in Science and Technology, vol. 42, no 8, , p. 1069-1079
↑(en) Okhotsimskii, D. E. E., Kondrasheva, I. L., Vlasova, Z. I. et Kazakova, R. K., « Computation of Point Explosion Taking into Account Counter-Pressure », Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 50, , p. 3-66
↑(en) D. L. Jones, The Energy Parameter B for Strong Blast Waves, National Bureau of Standards Tech. Rep. 155, (lire en ligne)
↑(en) Lin, S. C., « Cylindrical Shock Waves Produced by Instantaneous Energy Release », Journal of Applied Physics, vol. 25, no 1, , p. 54-57