Read other articles:

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (فبراير 2020) في مجال الاتصالات عن بعد، يعتبر الطيف المنثور بالسلسلة المباشرة[1] (بالإنج...

 

Untuk sinetron MNC Pictures, lihat Buaya Putih (sinetron). Buaya PutihSutradaraFritz G SchadtProduserAbdul Moeis SofyanSri GunawanPemeranYati Octavia Syamsuri Kaempuan Marlia Hardi Deddy Sutomo George Rudy Dicky Zulkarnaen Siska Widowati Boy TirayohTanggal rilis1982NegaraIndonesia Buaya Putih adalah film Indonesia yang diproduksi pada tahun 1982 yang disutradarai oleh Fritz G Schadt serta dibintangi antara lain oleh Yati Octavia, Syamsuri Kaempuan, Marlia Hardi, dan masih banyak lagi. Sinopsi...

 

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa Tionghoa 汉语/漢語 atau 中文Hànyǔ atau Zhōngwén Hànyǔ (Bahasa Tionghoa) ditulis dalam aksara tradisional (kiri) dan sederhana (kanan) Dituturkan diTiongkok Daratan, Taiwan, Jepang, Singapura, Malaysia, Amerika Serikat, Kanada, Britania Raya, Irlandia, Australia, Selandia Baru, Indonesia, Filipina, dan tempat-tempat l...

Fusillade de la synagogue de Pittsburgh Synagogue « Tree of Life » de Pittsburgh Localisation Pittsburgh, Pennsylvanie, États-Unis Cible Juifs Coordonnées 40° 26′ 37″ nord, 79° 55′ 17″ ouest Date 27 octobre 2018 Vers 9 h 45 (UTC−4) Type Fusillade Morts 11 Blessés 1 blessé grave Auteurs présumés Robert Bowers Mouvance Extrême droite antisémite[1]Théorie du complot du « génocide blanc » Géolocalisation sur l...

 

Television series Beaver FallsGenreComedy dramaCreated byIain HollandsStarringSam RobertsonJohn DagleishArsher AliNatasha LoringKristen GutoskieJon CorTodd BoyceAlison Doody Ben HawkeyOpening themeBillionaires by Your TwentiesCountry of originUnited KingdomOriginal languageEnglishNo. of series2No. of episodes12 (list of episodes)ProductionExecutive producersGeorge FaberCharles PattinsonProducerMat ChaplinProduction locationSouth AfricaCamera setupSingle cameraRunning time44–48 minutesProduc...

 

Untuk kegunaan lain, lihat GM. General Motors CompanyRenaissance Center di Detroit, Michigan.JenisPublikKode emitenNYSE: GMKomponen S&P 100Komponen S&P 500IndustriOtomotifDidirikan16 September 1908; 115 tahun lalu (1908-09-16) (dengan nama General Motors Corporation)11 Agustus 2009; 14 tahun lalu (2009-08-11) (dengan nama General Motors Company)[1]PendiriWilliam C. DurantCharles Stewart MottFrederic L. SmithKantorpusatDetroit, Michigan, Amerika SerikatCabang396 fasil...

American mortgage broker & politician (born 1969) This article is about the U.S. Representative from Indiana. For his father, the member of the Indiana Senate, see Frank Ed Mrvan Jr. Frank MrvanMrvan in 2020Member of the U.S. House of Representativesfrom Indiana's 1st districtIncumbentAssumed office January 3, 2021Preceded byPete Visclosky Personal detailsBornFrank John Mrvan (1969-04-16) April 16, 1969 (age 55)Hammond, Indiana, U.S.Political partyDemocraticSpouse Jan...

 

American scientist (1909–1991) Roger RevelleBornRoger Randall Dougan Revelle(1909-03-07)March 7, 1909Seattle, WashingtonDiedJuly 15, 1991(1991-07-15) (aged 82)San Diego, CaliforniaCitizenshipAmericanAlma materPomona College University of California, BerkeleyChildrenWilliam RevelleAwardsAlexander Agassiz Medal (1963)Tyler Prize for Environmental Achievement (1984)Vannevar Bush Award (1984)William Bowie Medal (1968)National Medal of Science (1990)Scientific careerInstitutionsScripps...

 

Pour les articles homonymes, voir Hollande (homonymie). Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. La mise en forme de cet article est à améliorer (janvier 2020). La mise en forme du texte ne suit pas les recommandations de Wikipédia : il faut le « wikifier ». Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées...

American swimmer Renee MageeEarly years, circa mid-70'sPersonal informationFull nameHolly Renee MageeRenee TuckerNational teamUnited StatesBorn(1959-03-30)March 30, 1959Texas City, TexasDiedJuly 13, 2022(2022-07-13) (aged 63)[1]Humble, TX[1]Height5 ft 11 in (1.80 m)Weight146 lb (66 kg)SpouseJames TuckerChildren2SportSportSwimmingStrokesBackstrokeClubBellevue Swim Club (Nebraska)Dad's Swim Club (Houston)College teamUniversity of North Car...

 

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

ناريندرا مودي هو الحالي (14) رئيس وزراء الهند، منذ 26 مايو 2014. رؤساء وزراء الهند (دولة الولادة) رئيس وزراء الهند هو الرئيس التنفيذي لحكومة الهند. وفي النظام البرلماني الهندي، يذكر الدستور أن الرئيس هو رئيس الدولة بحكم القانون، ولكن صلاحياته التنفيذية الفعلية تقع على عاتق رئيس...

 

Spanish racing driver (born 1997) In this Spanish name, the first or paternal surname is Palou and the second or maternal family name is Montalbo. Álex PalouPalou at Indianapolis Motor Speedway in 2023Nationality SpanishBornÁlex Palou Montalbo (1997-04-01) 1 April 1997 (age 27)Sant Antoni de Vilamajor, Barcelona, SpainIndyCar Series career68 races run over 5 yearsTeam(s)No. 10 (Chip Ganassi Racing)2023 position1stBest finish1st (2021, 2023)First race2020 Genesys 300 (Texas)Last...

 

American college football season 1991 Georgia Bulldogs footballIndependence Bowl championIndependence Bowl, W 24–15 vs. ArkansasConferenceSoutheastern ConferenceRankingCoachesNo. 19APNo. 17Record9–3 (4–3 SEC)Head coachRay Goff (3rd season)Offensive coordinatorWayne McDuffie (1st season)Offensive schemeNo-huddle spreadDefensive coordinatorRichard Bell (3rd season)Base defense3–4Home stadiumSanford StadiumSeasons← 19901992 → ...

County in Florida, United States County in FloridaMartin CountyCountyMartin County Courthouse SealLocation within the U.S. state of FloridaFlorida's location within the U.S.Coordinates: 27°05′N 80°24′W / 27.08°N 80.4°W / 27.08; -80.4Country United StatesState FloridaFoundedMay 30, 1925Named forJohn W. MartinSeatStuartLargest communityPalm CityArea • Total753 sq mi (1,950 km2) • Land543 sq mi (1,410 ...

 

1981 rebel offensive of the Salvadoran Civil War This article is about the 1981 rebel offensive of the Salvadoran Civil War. For the 1989 rebel offensive, see Final offensive of 1989. Final offensive of 1981Part of the Salvadoran Civil War and the Cold WarDate 10–26 January 1981 (2 weeks and 2 days) LocationEl SalvadorResult Government victoryBelligerents Revolutionary Government Junta Supported by:  United States  Honduras Farabundo Martí National Liberation Front Sup...

 

2007 Jordanian filmCaptain Abu RaedFilm posterDirected byAmin MatalqaWritten byAmin MatalqaProduced byKenneth KokinIsam SalfitiAida Jabaji MatalqaNadine ToukanLaith MajaliDavid PritchardStarringNadim SawalhaRana SultanMusic byAustin WintoryRelease dates 11 December 2007 (2007-12-11) (Dubai International Film Festival) 6 February 2008 (2008-02-06) Running time102 minutesCountryJordanLanguageArabic Captain Abu Raed (Arabic: كابتن أبو رائد) is a 200...

Species of flowering plant in the daisy family Asteraceae Tarragon Conservation status Secure  (NatureServe) Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Asterales Family: Asteraceae Genus: Artemisia Species: A. dracunculus Binomial name Artemisia dracunculusL.[1] not Hook.f. 1881 Synonyms[2] Synonymy Achillea dracunculus Hort. ex Steud. Artemisia aromatica A.Nelson Artemisia cernua Nutt. Ar...

 

Disproved conjecture in number theory In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem. It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many kth powers of positive integers is itself a kth power, then n is greater than or equal to k: a 1 k + a 2 k + ⋯ + a n k = b k ⟹ n ≥ k {\displaystyle a_{1}^{k}+a_{2}^{k}+\dots +a_{n}^{k}=b^{k}\implies n\geq k} The conjectur...