Cette masse linéique ou compacité constitue une limite minimale importante de la taille qu'un système physique peut avoir, compte tenu de sa masse. L'atteinte de cette taille minimale correspond au point où le système forme un trou noir de Schwarzschild.
Cette limite traduit une limite imposée par la relativité générale à la modélisation de la mécanique newtonienne : lorsqu'une modélisation d'un système physique conduit mathématiquement à une taille inférieure, le système évolue en réalité derrière un horizon de cette taille, et est donc physiquement inobservable.
Définition
La masse linéique de Planck a la dimension d'une masse divisée par une longueur (ML-1). Elle s'obtient en fonction des constantes fondamentales par :
La masse linéique de Planck n'est dérivée que de la constante de gravitation universelle de Newton et de la vitesse de la lumière, qui sont constantes dans le temps partout dans l’espace. Elle caractérise donc une propriété de l'espace-temps[1].
Autrement dit, le rapport entre la masse et le rayon d'un trou noir de Schwarzschild est égal à la masse linéique de Planck normalisée.
Pour une particule de masse m donnée, la plus petite distance à laquelle une autre particule peut s'approcher est celle correspondant au rayon de Schwarzschild. De ce fait, la masse linéique de Planck normalisée représente le plus petit rayon possible pour une particule de masse . Plus généralement, un système physique de masse ne peut pas avoir une extension inférieure à cette limite. En effet, en deçà de cette limite, il devient non-distinguable d'un trou noir de Schwarzschild, et son rayon effectif est le rayon de Schwarzschild. Cela implique qu’une masse ne peut jamais être ponctuelle, et qu’il existe une distance d’approche (réelle) minimale, proportionnelle à la masse[3] ; ou encore, que la masse linéique de Planck est une contrainte sur la taille minimale des systèmes physiques en fonction de leur masse.