Libre parcours moyen inélastique (électrons)

Le libre parcours moyen inélastique (en anglais : inelastic mean free path, ou IMFP) des électrons est une mesure de la distance moyenne qu'un électron parcourt à travers un solide avant de perdre de l'énergie.

Courbe universelle pour le libre parcours moyen inélastique des électrons dans les éléments, basée sur l'équation (5)[1].

Si un faisceau primaire monochromatique d'électrons d'énergie arrive sur une surface solide, la majorité des électrons incidents perdent leur énergie car ils interagissent fortement avec la matière, conduisant à une excitation du plasmon, à la formation de paires électron-trou et à une excitation vibratoire[2]. L'intensité du faisceau primaire est atténuée en fonction de la distance , parcourue dans le solide. La décroissance de l’intensité peut s'exprimée comme suit :

est l'intensité du faisceau d'électrons primaires après avoir traversé le solide jusqu'à une profondeur depuis la surface. Le paramètre s'appelle le libre parcours moyen inélastique (en anglais : inelastic mean free path, ou IMFP). Il est défini comme la distance qu'un faisceau d'électrons parcourt avant que son intensité ne soit divisée par e (la base des logarithmes naturels). Cette équation est étroitement liée à la loi de Beer-Lambert. Notons que les électrons éliminés du faisceau n'ont pas forcément disparu, la plupart ont juste perdu de l’énergie et ont été déviés de leur trajectoire initiale par diffusion inélastique.

L'IMFP des électrons en fonction de leur énergie peut être décrit approximativement par une courbe universelle qui est la même pour tous les matériaux[1],[3].

La connaissance de l'IMFP est indispensable pour certaines mesures en spectroscopie électronique et en microscopie électronique[4].

Applications

L'IMFP est utilisé en spectrométrie photoélectronique X pour calculer la longueur d'atténuation effective, la profondeur d'échappement moyenne et la profondeur d'information[5]. Il est en outre utilisé pour effectuer des corrections matricielles du facteur de sensibilité relative dans l'analyse quantitative des surfaces. De plus, il est un paramètre important pour les simulations Monte Carlo du transport des photoélectrons dans la matière.

Détermination de l'IMFP

Les déterminations de la valeur de l'IMFP sont principalement basées sur l'algorithme FPA (de l'anglais full Penn algorithm) développé par Penn[6], sur des constantes optiques expérimentales ou sur des données optiques calculées (pour les composés chimiques)[5]. Le FPA considère un événement de diffusion inélastique et la dépendance de la fonction de perte d'énergie avec le transfert de quantité de mouvement qui décrit la probabilité de diffusion inélastique en fonction du transfert de quantité de mouvement[5].

Mesures expérimentales de l'IMFP

Pour mesurer l'IMFP, une méthode bien connue est la spectroscopie du pic élastique (en anglais : elastic-peak electron spectroscopy, ou EPES)[5],[7]. Cette méthode mesure l’intensité des électrons rétrodiffusés élastiquement, avec une certaine énergie et dans une certaine direction, depuis un échantillon de matériau. En appliquant une technique similaire à des matériaux pour lesquels l'IMFP est connu, les mesures sont comparées aux résultats des simulations Monte Carlo dans les mêmes conditions. Ainsi, on obtient l'IMFP d'un certain matériau pour un certain spectre d'énergie. Les mesures EPES montrent une différence de la moyenne quadratique de 12 % à 17 % par rapport aux valeurs théoriques attendues[5]. Les résultats calculés et expérimentaux montrent un meilleurs accord aux énergies les plus élevées[5].

Pour des électron ayant des énergies comprises entre 30 keV et 1 MeV, l'IMFP peut être directement mesurée par spectroscopie de perte d'énergie des électrons à l'intérieur d'un microscope électronique en transmission, à condition que l'épaisseur de l'échantillon soit connue. De telles expériences révèlent que l'IMFP dans les solides élémentaires n'est pas une fonction lisse, mais une fonction oscillante du numéro atomique[8].

Pour des énergies inférieures à 100 eV, l'IMFP peut être évalué en utilisant des expériences mesurant le rendement des électrons secondaires (en anglais secondary electron yield, ou SEY) à haute énergie[9]. Pour cela, l'analyse du SEY est faite pour des énergies incidentes arbitraires comprises entre 0,1 keV et 10 keV. Ces expériences montrent qu'il est possible d'utiliser une méthode de Monte Carlo pour simuler les SEY et déterminer l'IMFP en dessous de 100 eV.

Formules prédictives

En utilisant le formalisme diélectrique[4], l'IMFP peut être calculé en résolvant l’intégrale suivante :

 

 

 

 

(1)

Dans cette expression, et sont respectivement la perte d'énergie minimale et la perte d'énergie maximale, est la permittivité diélectrique, est la fonction de perte d'énergie et sont le plus petit et le plus grand transfert de quantité de mouvement. En général, cette intégrale est difficile à résoudre et elle n'est utilisée que pour des énergies supérieures à 100 eV. En conséquence, des formules semi-empiriques ont été introduites pour déterminer l'IMFP.

Une première approche consiste à calculer l'IMFP à l'aide d'une forme approximative de la formule relativiste de Bethe pour la diffusion inélastique des électrons dans la matière[5],[10]. L'équation suivante est valable pour les énergies comprises entre 50 eV et 200 keV :

 

 

 

 

(2)

avec

et

(en eV) est l'énergie des électrons au-dessus du niveau de Fermi (pour les conducteurs) ou au-dessus du bas de la bande de conduction (pour les non-conducteurs), est la masse de l'électron, est la vitesse de la lumière dans le vide, est le nombre d'électrons de valence par atome ou par molécule, décrit la densité (en ), est la masse atomique ou moléculaire et , , et sont des paramètres déterminés plus loin. L'équation (2) permet de calculer l'IMFP et sa relation avec l'énergie de l'électron dans la matière condensée.

L'équation (2) a été développée plus en détails[5],[11] pour calculer les paramètres , , et pour les énergies comprises entre 50 eV et 2 keV. On obtient :

 

 

 

 

(3)

Dans ces expressions, l'énergie de la bande interdite est donné en eV. Les équations (2) et (3) sont connues sous le nom d'équations TTP-2M et sont valables pour des énergies comprises entre 50 eV et 200 keV. En négligeant quelques matériaux (diamant, graphite, Cs, c-BN et h-BN) qui ne suivent pas ces expressions en raison d'un écart sur ), les équations TTP-2M sont en accord précis avec les mesures.

Une autre approche basée sur l'équation (2) pour déterminer la valeur de l'IMFP est la formule S1[5],[12], qui s'applique pour des énergies comprises entre 100 eV et 10 keV :

est le numéro atomique (numéro atomique moyen dans le cas d'un composé), ou ( est la chaleur de formation du composé en eV par atome) et est la distance moyenne entre les atomes, que l'on calcule par :

est le nombre d'Avogadro et et sont les coefficients stœchiométriques décrivant les composés binaires . Dans ce cas, le numéro atomique devient :

et sont les numéros atomiques des deux constituants. La formule S1 est en meilleur accord avec les mesures que l'équation (2)[5].

Le calcul de l'IMFP en utilisant la formule TTP-2M ou la formule S1 nécessite la connaissance de différents paramètres[5]. La formule TTP-2M demande de connaître , et pour les matériaux conducteurs, ainsi que pour les matériaux non-conducteurs. La formule S1 nécessite le numéro atomique (numéro atomique moyen dans le cas des composés), et pour les matériaux conducteurs. Si l’on considère des matériaux non conducteurs, il faut également connaître soit soit .

Une formule analytique pour calculer l'IMFP jusqu'à des énergies aussi petites que 50 eV a été proposée en 2021[4]. Pour se faire, un terme exponentiel a été ajouté à une formule analytique déjà dérivée de l'expression (1) qui était applicable pour des énergies au-dessus de 500 eV :

 

 

 

 

(4)

Pour des électrons relativistes, on obtient :

 

 

 

 

(5)

où la vitesse des électrons est donnée par avec et est la vitesse de la lumière. Dans cette expression, et sont exprimés en nanomètres. Les constantes intervenant dans les expressions (4) et 5) sont définies par :

Données relatives à l'IMFP

Les données relatives à l'IMFP peuvent être collectées à partir de la base de données Electron Inelastic-Mean-Free-Path de l'Institut national des normes et de la technologie (en anglais : National Institute of Standards and Technology, ou NIST) des États-Unis[13] ou de la base de données NIST pour la simulation des spectres électroniques pour l'analyse des surfaces (en anglais : simulation of electron spectra for surface analysis, ou SESSA)[14]. Les données contiennent les IMFP déterminés par EPES pour des énergies inférieures à 2 keV. Sinon, les IMFP peuvent être déterminés à partir de la formule TPP-2M ou S1[5].

Voir également

Notes et références

Notes

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Inelastic mean free path » (voir la liste des auteurs).

Références

  1. a et b M. P. Seah et W. A. Dench, « Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids », Surface and Interface Analysis, (DOI 10.1002/sia.740010103), p. 2–11
  2. Egerton, R. F. (1996) Electron energy-loss spectroscopy in the electron microscope (Second Edition, Plenum Press, NY) (ISBN 0-306-45223-5)
  3. Wolfgang S. M. Werner, « Review of electron transport in solids », Surface and Interface Analysis, (DOI 10.1002/sia.973, S2CID 95869994), p. 141–176
  4. a b et c Le et Nguyen-Truong, « Analytical Formula for the Electron Inelastic Mean Free Path », The Journal of Physical Chemistry C, vol. 125, no 34,‎ , p. 18946–18951 (DOI 10.1021/acs.jpcc.1c05212, S2CID 238685492)
  5. a b c d e f g h i j k et l Powell, « Practical guide for inelastic mean free paths, effective attenuation lengths, mean escape depths, and information depths in x-ray photoelectron spectroscopy », Journal of Vacuum Science & Technology A, vol. 38, no 23209,‎
  6. Penn, « Electron mean-free-path calculations using a model dielectric function », Phys. Rev. B, vol. 35, no 482,‎ , p. 482–486 (PMID 9941428, DOI 10.1103/PhysRevB.35.482, Bibcode 1987PhRvB..35..482P)
  7. Powell et Jablonski, « Evaluation of Calculated and Measured Electron Inelastic Mean Free Paths Near Solid Surfaces », J. Phys. Chem. Ref. Data, vol. 28, no 1,‎ , p. 19–28 (DOI 10.1063/1.556035, Bibcode 1999JPCRD..28...19P)
  8. Iakoubovskii, Mitsuishi, Nakayama et Furuya, « Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior », Physical Review B, vol. 77, no 10,‎ , p. 104102 (DOI 10.1103/PhysRevB.77.104102, Bibcode 2008PhRvB..77j4102I, lire en ligne)
  9. Ridzel, Astasauskas et Werner, « Low energy electron inelastic mean free path values determined from analysis of secondary electron yields in the incident energy range of 0.1–10 keV », Journal of Electron Spectroscopy and Related Phenomena, vol. 241,‎ , p. 146824 (DOI 10.1016/j.elspec.2019.02.003, S2CID 104369752)
  10. Shinotsuka, Tanuma, Powell et Penn, « Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm », Surface and Interface Analysis, vol. 47, no 9,‎ , p. 871 (DOI 10.1002/sia.5789, S2CID 93935648, lire en ligne)
  11. Tanuma, Powell et Penn, « Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range », Surface and Interface Analysis, vol. 21, no 3,‎ , p. 165-176 (DOI 10.1002/sia.740210302, lire en ligne)
  12. Seah, « An accurate and simple universal curve for the energy-dependent electron inelastic mean free path », Surface and Interface Analysis, vol. 44, no 4,‎ , p. 497 (DOI 10.1002/sia.4816, S2CID 93786577)
  13. Powell et Jablonski, « NIST Electron Inelastic-Mean-Free-Path Database », NIST Standard Reference Database 71,‎ (lire en ligne)
  14. Werner, Smekal et Powell, « NIST Database for the Simulation of Electron Spectra for Surface Analysis, Version 2.1 », NIST NSRDS 100,‎ (lire en ligne)

Read other articles:

—— Permukiman di Uni Emirat Arab —— Warisanورسان Negara Uni Emirat Arab Emirat Dubai Kota Dubai Subwilayah Warisan 1 621 Warisan 2 622 Statistik permukiman Luas 17.1 km² Jumlah penduduk 1,421 [1] (2000) Kepadatan penduduk 83/km² Permukiman sekitarnya Al Warqaa, Nad Al Sheba Koordinat 25°09′46″N 55°25′21″E / 25.162687°N 55.422592°E / 25.162687; 55.422592Koordinat: 25°09′46″N 55°25′21″E / 25.16...

 

Cet article est une ébauche concernant le communisme et la politique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Enrico Berlinguer du Parti communiste italien (PCI) et Santiago Carrillo du Parti communiste d'Espagne (PCE) L'eurocommunisme est une réforme politique adoptée de concert par des partis communistes d'Europe de l'Ouest durant la seconde moitié des années 1970, en opposition au marxisme-lénin...

 

Dmitri Sychev Informasi pribadiNama lengkap Dmitri Yevgenyevich SychevTanggal lahir 26 Oktober 1983 (umur 40)Tempat lahir Omsk, Uni SovietTinggi 1,76 m (5 ft 9+1⁄2 in)Posisi bermain penyerangInformasi klubKlub saat ini Lokomotiv MoscowNomor 11Karier senior*Tahun Tim Tampil (Gol)2000–2001 Spartak Tambov 42 (9)2002 Spartak Moskwa 18 (9)2002–2003 Marseille 33 (5)2004– Lokomotiv Moskwa 213 (72)Tim nasional‡2002– Rusia 47 (15) * Penampilan dan gol di klub senio...

العلاقات الإندونيسية الإيرانية إندونيسيا إيران   إندونيسيا   إيران تعديل مصدري - تعديل   العلاقات الإندونيسية الإيرانية هي العلاقات الثنائية التي تجمع بين إندونيسيا وإيران.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: و�...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: St. Pius X High School Festus, Missouri – news · newspapers · books · scholar · JSTOR (April 2015) (Learn how and when to remove this template message) Private, coeducational school in Festus, Jefferson, MissouriSt. Pius X High SchoolLocationFestus, Jeffer...

 

Census area in Alaska, United States Borough in AlaskaDillingham Census AreaBoroughAmalik Bay Archeological DistrictLocation within the U.S. state of AlaskaAlaska's location within the U.S.Coordinates: 59°57′N 158°26′W / 59.95°N 158.43°W / 59.95; -158.43Country United StatesState AlaskaEstablished1980[1]Largest cityDillinghamArea • Total20,915 sq mi (54,170 km2) • Land18,569 sq mi (48,090 k...

Laskar Pelangi 2: EdensorPoster filmSutradaraBenni SetiawanProduserPutut Widjanarko Avesina SoebliDitulis olehBenni SetiawanPemeranLukman Sardi Abimana Aryasatya Astrid Roos Mathias Muchus Rendy Akhmad ZulfannyDistributorMizan ProductionFalcon PicturesTanggal rilis24 Desember 2013Durasi90 menitNegara IndonesiaBahasaBahasa IndonesiaPrekuelSang Pemimpi Edensor, juga dikenal sebagai Laskar Pelangi 2: Edensor, adalah film drama petualangan Indonesia yang dirilis pada 24 Desember 2013. Film ini di...

 

Narrative poem by Øyvind Rimbereid Solaris korrigert (Solaris Corrected)by Øyvind RimbereidCover of the 1st edition.Original titleSolaris korrigertWritten2004CountryNorwayLanguageA fictional future language based on Norwegian (Stavanger dialect) with English, German and old Norse mixed inSubject(s)Science fictionFormNarrativePublisherGyldendal Norsk ForlagPublication date2004Media typePrintISBN9788205332355OCLC1028421725 Solaris korrigert is a Norwegian narrative poem by Øyvind Rimbereid, ...

 

Iron ManvideogiocoPiattaformaPlayStation 2, Nintendo DS, PlayStation 3, Xbox 360, Wii, PlayStation Portable, Microsoft Windows, Telefono cellulare Data di pubblicazionePlayStation 2, Nintendo DS: 2 maggio 2008 2 maggio 2008 2 maggio 2008 PlayStation 3, Xbox 360, Wii: 2 maggio 2008 2 maggio 2008 8 maggio 2008 PlayStation Portable: 2 maggio 2008 9 maggio 2008 15 maggio 2008 Microsoft Windows: 6 maggio 2008 16 maggio 2008 15 maggio 2008 PlayStation Network: 30 settemb...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: DSP Media – berita · surat kabar · buku · cendekiawan · JSTOR (Maret 2016) DSP MediaNama asliDSP 미디어SebelumnyaDaesung Enterprise (1991–1999)DSP Entertainment (2000-2006)DSP Enti (2006–2007)JenisSwas...

 

Questa voce sull'argomento tecniche artistiche è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Tipico esempio di prospettiva forzata in una foto con la Torre pendente di Pisa. La prospettiva forzata[1] è una tecnica che si avvale della illusione ottica per far apparire un oggetto più lontano, più vicino, più o meno grande di quanto non sia in realtà. È utilizzato principalmente in fotografia, cinema e architettura. Si manipola la percezi...

 

Series of computer game compilations Pegged redirects here. For other uses, see Peg (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Microsoft Entertainment Pack – news · newspapers · books · scholar · JSTOR (December 2007) (Learn how and when to remove this message) 1990 video gameMicrosoft...

Highest mountain of North Dakota For other uses, see White Butte (disambiguation). White ButteWhite Butte, the highest point in North Dakota, viewed from 140th Avenue SW, May 2018.Highest pointElevation3,508 ft (1,069 m) NAVD 88[1]Prominence546 ft (166 m)[1]ListingU.S. state high point 30thCoordinates46°23′12″N 103°18′09″W / 46.386676°N 103.3024015°W / 46.386676; -103.3024015[2]GeographyWhite ButteS...

 

Strada statale 621della Valle AurinaLocalizzazioneStato Italia Regioni Trentino-Alto Adige DatiClassificazioneStrada statale InizioBrunico FineFonte della Roccia Lunghezza43,000[1] km Provvedimento di istituzioneD.M. 19/08/1971 - G.U. 260 del 13/10/1971[2] GestoreANAS (1971-1998)Provincia autonoma di Bolzano (1998-) Manuale La strada statale 621 della Valle Aurina (SS 621, in tedesco Ahrntaler Staatsstraße), è un'importante strada statale italiana. Indice 1 Percors...

 

Pour les articles homonymes, voir Edith, Head et Posener. Edith Head Edith Head en 1976. Données clés Nom de naissance Edith Claire Posener Naissance 28 octobre 1897San Bernardino (Californie) Nationalité Américaine Décès 24 octobre 1981 (à 83 ans)Los Angeles (Californie) Profession Costumière Films notables ÈveVacances romainesLes Dix Commandements modifier Ann Miller et Edith Head Edith Head est une costumière de cinéma américaine, née Edith Posener le 28 octobre 1897 à ...

Japanese multinational corporation Mitsubishi Heavy Industries, Ltd.Headquarters in Marunouchi, Chiyoda, TokyoNative name三菱重工業株式会社Romanized nameMitsubishi Jūkōgyō Kabushiki-kaishaCompany typePublic KKTraded asTYO: 7011FSE: 7011IndustryEngineeringElectrical equipmentElectronicsAerospace DefenseFounded July 7, 1884; 140 years ago (1884-07-07) (original) January 11, 1950; 74 years ago (1950-01-11) (incorporation) FounderYatarō IwasakiHead...

 

Military crest is a term in military science that refers to, An area on the forward or reverse slope of a hill or ridge just below the topographical crest from which maximum observation and direct fire covering the slope down to the base of the hill or ridge can be obtained.[1] The military crest is used in maneuvering along the side of a hill or ridge to provide the maneuvering force maximum visibility of the terrain below and minimize their own visibility by not being silhouetted ag...

 

Pour les articles homonymes, voir Saint-Étienne (homonymie). Saint-Étienne-de-Montluc De haut en bas : église, mairie, gare, salle de concert « Espace Montluc » Blason Logo Administration Pays France Région Pays de la Loire Département Loire-Atlantique Arrondissement Nantes Intercommunalité Communauté de communes Estuaire et Sillon Maire Mandat Rémy Nicoleau 2020-2026 Code postal 44360 Code commune 44158 Démographie Gentilé Stéphanois Populationmunicipale 7 6...

Japanese castle in Tatebayashi, Gunma Prefecture, Japan Tatebeyashi Castle 館林城Tatebayashi, Gunma Prefecture, Japan Dobashi-mon of Tatebayashi CastleTatebeyashi Castle 館林城Show map of Gunma PrefectureTatebeyashi Castle 館林城Show map of JapanCoordinates36°14′39.25″N 139°32′28.8″E / 36.2442361°N 139.541333°E / 36.2442361; 139.541333Typeflatland-style Japanese castleSite informationOpen tothe publicyesSite historyBuilt15th centuryrebuil...

 

Ōta太田Family crest (kamon) of main Ōta lineHome provinceTanba ProvinceParent house Minamoto clan (Seiwa Genji)Titlesdaimyō, viscountFounderMinamoto (Ōta) SukekuniFinal rulerŌta SukeyoshiFounding year14th centuryRuled until1871 (Abolition of the han system) In this Japanese name, the surname is Ōta. The Ōta clan (太田氏,, Ōta-shi) was samurai kin group which rose to prominence in Sengoku and Edo period Japan.[1] Under the Tokugawa shogunate, the Ōta were hereditary vassa...