Inégalité d'Olech-Opial

En mathématiques, l'inégalité d'Olech-Opial, connue aussi sous le nom d'inégalité d'Opial ou inégalité d'Olech-Opial-Beesack ou inégalité d'Olech-Opial-Levinson, se rencontre dans l'étude des problèmes aux limites en calcul différentiel. Elle porte le nom du mathématicien polonais Czesław Olech.

Énoncé

L'inégalité d'Olech-Opial s'énonce ainsi:

Inégalité d'Olech-Opial — Si où a>0 et tel que alors :

La borne est optimale et atteinte pour f affine.

Démonstration

On donnera la démonstration de Mallows, plus courte que les originales[1]. On pose , de sorte que . Ainsi :

Or, l'inégalité de Cauchy-Schwarz donne :

ce qui permet de conclure.

Historique

Opial prouve l'inégalité en 1960[2] et Olech montre qu'elle reste valide dans des conditions plus faibles (pour f' non plus continue mais seulement de carré Lebesgue-intégrable[3],[4]). Beesack[5] et Levinson[6] sont parmi les premiers à donner des démonstrations plus simples de l'inégalité, ce dernier étendant le résultat aux fonctions à valeurs complexes.

Applications

L'inégalité d'Olech-Opial et ses variantes sont utilisées dans l'études des solutions d'équations intégro-différentielles et de problèmes aux limites[7].

Voir aussi

Références

  1. (en) C. Li. Mallows, « An even simpler proof of Opial’s inequality », Proceedings of the American Mathematical Society, vol. 16, no 1,‎ , p. 173 (lire en ligne).
  2. (en) Z. Opial, « Sur une inégalité », Annales Polonici Mathematici, vol. 8, no 1,‎ , p. 29-32
  3. (en) C. Olech, « A simple proof of a certain result of Z. Opial », Annales Polonici Mathematici, vol. 8, no 1,‎ , p. 61-63
  4. (en) John M. Holt, « Integral Inequalities Related to Non-Oscillation Theorems for Differential Equations », Journal of the Society for Industrial and Applied Mathematics, vol. 13, no 3,‎ (DOI 10.1137/0113050)
  5. (en) Paul R. Beesack, « On an integral inequality of Z. Opial », Transactions of the American Mathematical Society, vol. 104, no 3,‎ , p. 470-475
  6. (en) N. Levinson, « On an inequality of Opial and Beesack », Proceedings of the American Mathematical Society, vol. 15, no 4,‎ , p. 565-566.
  7. (en) Ravi P. Agarwal et P. Y. Pang, Opial inequalities with applications in differential and difference equations, vol. 320, Springer Science & Business Media, .