Hugh Acland

Hugh Acland peut désigner :

Read other articles:

Francis X. BushmanBushman in 1912LahirFrancis Xavier Bushman(1883-01-10)10 Januari 1883Baltimore, Maryland, U.S.Meninggal23 Agustus 1966(1966-08-23) (umur 83)Pacific Palisades, California, U.S.PekerjaanActor, director, writerTahun aktif1911–1966Tinggi183 m (600 ft 5 in)Suami/istri Josephine Fladine Duval ​ ​(m. 1902; c. 1918)​ * Beverly Bayne ​ ​(m. 1918; c. 1925)​ * Nor...

 

Ketua Dewan Pertimbangan Presiden Republik IndonesiaPetahanaWirantosejak 13 Desember 2019Dewan Pertimbangan PresidenDitunjuk olehPresiden IndonesiaDibentuk10 April 2007; 16 tahun lalu (2007-04-10)Pejabat pertamaAli AlatasSitus webSitus web resmi Berikut adalah daftar Ketua Dewan Pertimbangan Presiden Republik Indonesia secara definitif sejak tahun 2007. Nomor urut Ketua Potret Partai Awal Akhir Masa jabatan Presiden Ref. 1   Ali Alatas(1932–2008) Golkar 10 April 2007 11 Desem...

 

.za

.za البلد جنوب إفريقيا[1]  الموقع الموقع الرسمي  تعديل مصدري - تعديل   za.[2] هو امتداد خاص بالعناوين الإلكترونية (نطاق) domain للمواقع التي تنتمي لجنوب أفريقيا، لو لاحظت عدم ارتباط الاسم الإنجليزي مع الامتداد وذلك لان جنوب أفريقيا كانت تسمى Zuid-Afrika عندما كانت اللغة �...

German rail company VIAS redirects here. For Voluntary Industrial Aid for Spain, see Voluntary Industrial Aid for Spain. For other uses, see Vias (disambiguation). This article is about the German rail company. For the Canadian rail service provider, see Via Rail. Vias GmbHFounded2005Key peopleJochen Auler, Herbert Häner, Sebastian NießenServicesRail servicesNumber of employees210 (2016)Websitewww.vias-online.de The Vias GmbH (stylized VIAS) is a rail service company based in Frankfurt (Ger...

 

Seifuku ga Jama o SuruSingel oleh AKB48dari album Set List: Greatest Songs 2006–2007Sisi-BVirgin LoveDirilis31 Januari 2007 (2007-01-31)FormatCD SingelGenrePopDurasi17:57LabelDefSTAR RecordsPenciptaYasushi Akimoto, Yoshimasa InoueProduserYasushi Akimoto Seifuku ga Jama o Suru (制服が邪魔をするcode: ja is deprecated , Seragam Ini Sangat Mengganggu) adalah singel ke-2 dari grup idola Jepang AKB48 yang dirilis dengan label DefSTAR Records atau singel ke-4 bila dua singel indies ik...

 

星洲网网站类型新闻网站语言简体中文總部 马来西亚雪兰莪州八打灵再也Semangat路19号(星洲日报总部)持有者世华多媒体有限公司編輯卜亚烈网址www.sinchew.com.my商业性质是注册选择性(个人新闻空间)推出时间2000年4月21日,​24年前​(2000-04-21)內容許可保有版权 星洲网,是一家马来西亚线上免费综合新闻网站,也是马来西亚销售量最高的中文报《星洲日报》...

Kejuaraan Bisbol Sekolah Menengah Atas JepangKejuaraan Bisbol Sekolah Menengah Atas JepangOlahragaBisbolDidirikan1915Jumlah tim49Negara JepangJuaraterkiniChukyodai ChukyoJuara terbanyakChukyodai Chukyo (7 kali)Situs web resmiasahi.com Kejuaraan Bisbol Sekolah Menengah Atas Jepang (全国高等学校野球選手権大会code: ja is deprecated , Zenkoku Kōtō Gakkō Yakyū Senshuken Taikai) atau populer dengan sebutan Kōshien Musim Panas (夏の甲子園code: ja is deprecated , Natsu no ...

 

Satan Paese d'origine Regno Unito GenereHeavy metal[1]NWOBHM[1]Thrash metal[1] Periodo di attività musicale1980 – 1999 (1984-1985 come Blind Fury e 1988-1999 come Pariah)20042011 – in attività EtichettaListenable Records, Steamhammer, Neat Records, Roadrunner Album pubblicati7 (Satan)1 (Blind Fury)3 (Pariah) Studio4 (Satan)1 (Blind Fury)3 (Pariah) Live2 (Satan) Raccolte1 (Satan) Sito ufficiale Modifica dati su Wikidata · Ma...

 

Tattoos associated with criminal activity and gang membership Not to be confused with Prison tattooing. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Criminal tattoo – news ...

The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: That's Good, That's Bad Frankie Laine song – news · newspapers · books · s...

 

American politician (born 1971) Marc VeaseyMember of the U.S. House of Representativesfrom Texas's 33rd districtIncumbentAssumed office January 3, 2013Preceded byConstituency establishedMember of the Texas House of Representativesfrom the 95th districtIn officeJanuary 11, 2005 – January 3, 2013Preceded byGlenn LewisSucceeded byNicole Collier Personal detailsBornMarc Allison Veasey (1971-01-03) January 3, 1971 (age 53)Fort Worth, Texas, U.S.Political...

 

History of the feminist movement in the UK Part of a series onFeminism History Feminist history History of feminism Women's history American British Canadian German Waves First Second Third Fourth Timelines Women's suffrage Muslim countries US Other women's rights Women's suffrage by country Austria Australia Canada Colombia India Japan Kuwait Liechtenstein New Zealand Spain Second Republic Francoist Switzerland United Kingdom Cayman Islands Wales United States states Intersectional variants ...

2017 Indian filmThappu ThandaTheatrical release posterTamilதப்பு தண்டா Directed bySrikantanWritten bySrikantanScreenplay bySrikantanProduced bySathyamurthiStarringSathyamurthi Swetha GaiMime GopiJohn VijayCinematographyA. Vinod BharathiEdited byRaja SethupathyMusic byNaren BalakumarProductioncompanyClap Board ProductionDistributed byClap Board ProductionRelease date 8 September 2017 (2017-09-08) Running time109 minutesCountryIndiaLanguageTamil Thappu Thanda...

 

Seaside village in County Donegal, Ireland Village in Ulster, IrelandNarin An FhearthainnVillageNarin strandNarinLocation in IrelandCoordinates: 54°50′19″N 8°26′47″W / 54.838748°N 8.446482°W / 54.838748; -8.446482CountryIrelandProvinceUlsterCountyCounty DonegalTime zoneUTC+0 (WET) • Summer (DST)UTC-1 (IST (WEST))Irish Grid ReferenceG818944 Narin (Irish: An Fhearthainn),[1] also Naran, is a small seaside village and townland in the parish...

 

此條目包含過多圖像或圖表以致損及可讀性。 (2024年5月22日)請協助改善本條目以改善網頁親和力及符合格式手冊。詳細說明: 維基百科不是圖片集或媒體檔案集,所使用的圖片內容應與條目內文呼應。雖然圖片對於維基百科是很重要的輔助內容,但過度的使用圖片,甚至是以圖片取代文字說明,這樣做可能違背了百科全書的精神。若你有興趣展示與本條目相關的圖片,請考...

Prof.Malkianus Paul LambutEms.Lahir5 Desember 1931 (umur 92)Dahirang, Hindia BelandaTempat tinggalBanjarmasin, Kalimantan SelatanWarga negaraIndonesia Prof. Malkianus Paul Lambut, Ems. (lahir 5 Desember 1931) adalah akademisi dan Guru Besar Universitas Lambung Mangkurat Banjarmasin.[2] Kiprah Lambut dilahirkan pada tanggal 5 Desember 1931 di sebuah desa yang bernama Dahirang, Kecamatan Kapuas Hilir, Kalimantan Tengah. Lambut adalah anak sulung dari empat bersaudara.[3] L...

 

Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Robert Stromberg – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Budi M3mk B4biWawancara dengan R...

 

У этого термина существуют и другие значения, см. Бак (значения). полубак (слева) и бак (справа) Бак (от нидерл. bakboord[1] — «сторона, находящаяся за спиной рулевого»; нем. Backbord; англ. back) — передняя часть палубы (от носа до фок-мачты) или палубы носовой надстройки[...

Juan Gris, Nature morte à la nappe à carreaux (Still Life with Checkered Tablecloth), 1915, huile sur toile (116,5 × 89,3 cm), Metropolitan Museum of Art (le Met), New York. Le cubisme est un mouvement artistique du début du XXe siècle, qui constitue une révolution dans la peinture et la sculpture, et influence également l'architecture, la littérature et la musique. Produites essentiellement dans la région parisienne, les œuvres cubistes représentent des objets ...

 

S-shaped curve For the recurrence relation, see Logistic map. A logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with the equation f ( x ) = L 1 + e − k ( x − x 0 ) {\displaystyle f(x)={\frac {L}{1+e^{-k(x-x_{0})}}}} where L {\displaystyle L} is the carrying capacity, the supremum of the values of the function; k {\displaystyle k} is the logistic growth rate, the steepness of the curve; and x 0 {\displaystyle x_{0}} is the x {\displaystyle x} value ...