En théorie des graphes, un graphe connexe« est dit k-sommet-connexe s'il possède au moins k + 1 sommets et s'il reste encore connexe après en avoir ôté k – 1[1] ».
Définitions
Un graphe autre qu'un graphe complet est de degré de sommet-connexiték s'il est k-sommet-connexe sans être k+1-sommet-connexe, donc si k est la taille du plus petit sous-ensemble de sommets dont la suppression déconnecte le graphe[2]. Les graphes complets ne sont pas inclus dans cette version de la définition car ils ne peuvent pas être déconnectés en supprimant des sommets. Le graphe complet à n sommets est de degré de connexité n-1.
Une définition équivalente est qu'un graphe avec au moins deux sommets est k-sommet-connexe, pour chaque paire de ses sommets, il existe est kchaînes indépendantes reliant ces sommets ; c'est le théorème de Menger[3]. Cette définition produit la même réponse n − 1, pour la connexité du graphe complet Kn[2].
Un graphe 1-sommet-connexe est appelé un graphe connexe ; un graphe 2-sommet-connexe est appelé un graphe biconnexe. Un graphe 3-connexe est aussi appelé triconnexe.
Un graphe régulier de degré k est au plus k-sommet-connexe et k-arête-connexe. S'il est effectivement k-sommet-connexe et k-arête-connexe, il est dit optimalement connecté.
Exemples
Pour tout n, le graphe complet Kn (régulier de degré n – 1) est optimalement connecté.
Pour tout k > 2 et tout j > 1, le graphe moulin Wd(k, j) est 1-sommet-connexe. Pour le séparer en j composantes connexes, il suffit de supprimer son sommet de plus haut degré : son centre.
Le graphe cycle Cn est 2-sommet-connexe pour tout n > 3.