Georgina Bardach

Georgina Bardach
Image illustrative de l’article Georgina Bardach
Informations
Nages nage libre
Nationalité Argentine
Naissance (41 ans)
Concordia
Palmarès
Jeux olympiques 1
Ch. du monde petit bassin 1

Georgina Bardach Martin (née le à Concordia), est une nageuse argentine médaillée de bronze du 400 m quatre nages aux Jeux olympiques d'Athènes en 2004[1]. À l'issue de l'année 2012 durant laquelle elle a participé à ses quatrièmes Jeux olympiques, la nageuse annonce la fin de sa carrière sportive[2].

Palmarès

Jeux olympiques

Championnats du monde

Jeux panaméricains

Références

  1. (en) Profil olympique, sur sports-reference.com
  2. (es) Georgina Bardach se retira de la natación, sur swimcrunch.com.ar, le 19 septembre 2012

Read other articles:

Hide and SeekAlbum mini karya Weki MekiDirilis18 Juni 2020 (2020-06-18)GenreDance-popHip hopmoombahtonretroR&BDurasi16:25Label Fantagio Music Kakao M Produser Stainboys Jonas Mengler CR Kim Aiming Cho Se-hee Lee Joo-heon The Far Eastern Division Jeong Tae-ho Kronologi Weki Meki Lucky(2018) Hide and Seek(2020) New Rules(2020) Singel dalam album Hide and Seek Dazzle DazzleDirilis: 20 Februari 2020 OopsyDirilis: 18 Juni 2020 Hide and Seek (ditulis sebagai HIDE and SEEK) adalah album...

 

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

 

Archaeological site in central Israel Tel Gerisa, Tell Jerishe, Tel NapoleonTel Gerisa (Tel Napoleon)Shown within IsraelLocationTel AvivCoordinates32°05′30″N 34°48′27″E / 32.09167°N 34.80750°E / 32.09167; 34.80750New Israel Grid1820/6667 Tel Gerisa (Hebrew: תל גריסה) or Tell Jerishe[1] and Tell Jarisha (Arabic), commonly known as Tel Napoleon (Hebrew: תל נפוליאון, lit. 'Napoleon's Hill'), as his army camped on it durin...

For the small town in Indiana, see Renner, Indiana. Renner is a section of Dallas, Texas, United States, within southwestern Collin County and southeastern Denton County,[1] that was once a distinct rural community of approximately 10 square miles and housed the center of a nonprofit agricultural research organization.[2] Renner is within the North Central Division of the Dallas Police Department, which is headquartered at 6969 McCallum Boulevard.[3][4] Aerial ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2020) جيفيرسون سانتوس معلومات شخصية الميلاد 28 مايو 1992 (العمر 31 سنة)سالفادور  الطول 1.93 م (6 قدم 4 بوصة) مركز اللعب مدافع الجنسية البرازيل  معلومات الناد�...

 

Hungarian animated children series This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (October 2020) (Learn how and when to remove this template message) A kockásfülű nyúlGenreComedyWritten byVeronika MarékDirected byZsolt RichlyBakara BarbaraTheme music composerÁrpád BalázsBalázs ÁdámCountry of originHungaryOriginal ...

Referendum for the Indigenous Voice to Parliament This article is about the referendum held in 2023. For the proposed body and its conceptual development, see Indigenous Voice to Parliament. 2023 Australian Indigenous Voice referendum 14 October 2023 (2023-10-14) A Proposed Law: To alter the Constitution to recognise the First Peoples of Australia by establishing an Aboriginal and Torres Strait Islander Voice.Do you approve this proposed alteration?OutcomeNot carried. A majorit...

 

American politician John R. CravensLieutenant Governor of IndianaIn officeJanuary 16, 1861 – October 9, 1863GovernorOliver P. MortonPreceded byOliver P. MortonSucceeded byParis C. Dunning Personal detailsBorn(1819-11-22)November 22, 1819Madison, Indiana, U.S.DiedMarch 26, 1899(1899-03-26) (aged 79)Madison, Indiana, U.S.Political partyRepublicanEducationIndiana University (BA) & (MA)Military serviceAllegianceUnited StatesBranch/serviceUnion ArmyBattles/wars American Civil W...

 

Greek military leader and politician This article is about the military leader. The name may also refer to Andreas Ch. Londos [el], mayor of Patras. ColonelAndreas LondosAndreas Londos in uniform.Native nameΑνδρέας ΛόντοςBornc. 1786Vostitsa, Ottoman Empire (now Aigio, Greece)Diedc. 1846Athens, Kingdom of GreeceAllegiance First Hellenic Republic Kingdom of GreeceService/branch Hellenic ArmyYears of service1821 - 1846RankColonelBattles/wars Greek War of Indep...

Belgian association football player Michy Batshuayi Batshuayi with Belgium in 2019Personal informationFull name Michy Batshuayi-Atunga[1]Date of birth (1993-10-02) 2 October 1993 (age 30)[2]Place of birth Brussels, BelgiumHeight 1.85 m (6 ft 1 in)[3]Position(s) StrikerTeam informationCurrent team FenerbahçeNumber 23Youth career2003–2005 RFC Evere2005–2006 RUSA Schaarbeek2006–2007 Brussels2007–2008 Anderlecht2008–2009 Brussels2009–2011 S...

 

内華達州 美國联邦州State of Nevada 州旗州徽綽號:產銀之州、起戰之州地图中高亮部分为内華達州坐标:35°N-42°N, 114°W-120°W国家 美國建州前內華達领地加入聯邦1864年10月31日(第36个加入联邦)首府卡森城最大城市拉斯维加斯政府 • 州长(英语:List of Governors of {{{Name}}}]]) • 副州长(英语:List of lieutenant governors of {{{Name}}}]])喬·隆巴爾多(R斯塔...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) الطري�...

 

1961 film This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: By Love Possessed film – news · newspapers · books · scholar · JSTOR (March 2016) (Learn how and when to remove this message) By Love PossessedTheatrical release posterDirected byJohn SturgesWritten byCharles Schnee (as John Dennis)Based onBy Lov...

The Oxford Ring Road circles the city of Oxford, England. It is a dual carriageway ring road for most of its length apart from a short section between Woodstock Road and Banbury Road in the north of the city. The severe restrictions on traffic in Oxford city centre mean that it is the only practical way for long-distance traffic to get past Oxford, especially as there are few road bridges over the rivers Isis and Cherwell. Five Park and Rides are close to the ring road. Junctions list Oxford...

 

マレーシアの政治家マハティール・ビン・モハマドMahathir bin Mohamad マハティール・ビン・モハマド(2018年8月3日)生年月日 (1925-07-10) 1925年7月10日(99歳)[注釈 1]出生地 イギリス領マラヤ、クダ州アロースター所属政党 (バリサン・ナショナル→)(統一マレー国民組織→)祖国闘士党(英語版)称号 桐花大綬章配偶者 シティ・ハスマ子女 7 (ムクリズ、マリナ�...

 

Defunct major soccer league in the United States and Canada This article is about the original national Division I soccer league that was active from 1968 to 1985. For the league founded in 2009, see North American Soccer League (2011–2017). Football leagueNorth American Soccer LeagueNASL logo (1975–1984)[1]FoundedDecember 7, 1967; 56 years ago (1967-12-07)[2]FoldedMarch 28, 1985; 39 years ago (1985-03-28)CountryUnited StatesOther club(s...

九重部屋(ここのえべや)は、日本相撲協会所属で高砂一門の相撲部屋。 歴史 1959年(昭和34年)1月場所限りで引退して出羽海部屋の部屋付き親方となっていた一代年寄・千代の山(第41代横綱・千代の山)が年寄名跡「九重」を取得し、同年9月に年寄・11代九重を襲名した。当初、独立の意思はなく、出羽海部屋の継承を望んでいた。 1960年11月、7代出羽海(元横綱・�...

 

Attempt to classify and tabulate all possible knots A small table of all prime knots (excluding mirror images) with 7 crossings or fewer. Ever since Sir William Thomson's vortex theory, mathematicians have tried to classify and tabulate all possible knots. As of May 2008, all prime knots up to 16 crossings have been tabulated.[1] The major challenge of the process is that many apparently different knots may actually be different geometrical presentations of the same topological entity...