Read other articles:

GloryAlbum studio karya Britney SpearsDirilis26 Agustus 2016 (2016-08-26)DirekamSeptember 2014 – Juni 2016Genre Pop dance-pop R&B Durasi41:27LabelRCAProduser BloodPop Burns Cashmere Cat DJ Mustard Jason Evigan Oak Felder Andrew Goldstein Oscar Görres Ian Kirkpatrick Mattman & Robin Nick Monson Alex Nice Robopop Lance Eric Shipp Twice as Nice Tramaine Winfrey Kronologi Britney Spears Britney Jean(2013) Glory(2016) Oops!...I Did It Again (Remixes and B-Sides)(2020) Sing...

 

The Joshua TreeAlbum studio karya U2Dirilis9 Maret 1987DirekamWindmill Lane Studios, Dublin 1986GenreRockDurasi50:11LabelIsland RecordsProduserBrian Eno, Daniel LanoisKronologi U2 Wide Awake in America(1985)Wide Awake in America1985 The Joshua Tree(1987) Rattle and Hum(1988)Rattle and Hum1988 Sampul alternatif The Joshua Tree adalah album studio kelima oleh kelompok U2, diterbitkan pada 9 Maret 1987 oleh Island Records, diproduksi oleh Brian Eno dan Daniel Lanois. Album ini memenangkan Al...

 

Bandar Udara Bostد بوست هوايي ډګرIATA: BSTICAO: OABTInformasiJenisUmumPemilik AfganistanPengelolaMenteri Transportasi dan Penerbangan SipilLokasiLashkargah, AfganistanKetinggian dpl mdplKoordinat31°33′31.6″N 64°21′52.9″E / 31.558778°N 64.364694°E / 31.558778; 64.364694 (Bandar Udara Bost)Koordinat: 31°33′31.6″N 64°21′52.9″E / 31.558778°N 64.364694°E / 31.558778; 64.364694 (Banda...

Not to be confused with Overdose (Ciara song). 2018 single by CiaraDoseSingle by Ciarafrom the album Beauty Marks ReleasedSeptember 14, 2018StudioBeauty Marks StudiosGenreR&BLength3:42LabelBeauty MarksWarner Bros.Songwriter(s) Rodney Jerkins Ciara Harris Carmen Reece Producer(s)Rodney JerkinsCiara singles chronology Freak Me (2018) Dose (2018) Greatest Love (2019) Music videoDose on YouTube Dose is a song recorded by American singer Ciara released on September 14, 2018. The song was compo...

 

Private, day school in Potomac, Maryland, United StatesThe Heights SchoolThe Heights SchoolAddress10400 Seven Locks RoadPotomac, Maryland 20854-4085United StatesCoordinates39°1′42″N 77°9′52″W / 39.02833°N 77.16444°W / 39.02833; -77.16444InformationTypePrivate, dayMottoCrescite(grow; increase, multiply (Genesis 1:28))Religious affiliation(s)[[Catholic ]]DenominationRoman CatholicEstablished1969School districtIndependentHeadmasterAlvaro de VicenteChaplainRev....

 

You can help expand this article with text translated from the corresponding article in Italian. (December 2010) Click [show] for important translation instructions. View a machine-translated version of the Italian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wik...

Hindu bathing festival Snana YatraSnana Yatra at Puri Srimandira in 2022Official nameSnana YatraAlso calledSnana PurnimaObserved byOdia PeopleSignificanceBirthday of Lord JagannathDateJyestha Purnima2023 date4 June (Sunda) The Snana Yatra (Odia: ସ୍ନାନ ଯାତ୍ରା), also spelt Snana Jatra, is a bathing festival of deities celebrated on the purnima (full moon day) of the Hindu month of Jyeshtha.[1][2] It is the auspicious birthday of Jagannath. Elephan...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Sculpture by Bernt Notke Saint George and the Dragon by Bernt Notke Saint George and the Dragon (Swedish: Sankt Göran och draken) is a late medieval wooden sculpture depicting the legend of Saint George and the Dragon, located in Storkyrkan in Stockholm, Sweden. It is attributed to Bernt Notke and was commissioned by the Swedish regent Sten Sture the Elder. It was inaugurated in 1489. It has been described as an artistic high point in the artistic production of Bernt Notke. History The statu...

François Ravaillac, incisione di Crispin de Passe, 1610. François Ravaillac (Touvre, settembre 1578 – Parigi, 27 maggio 1610), prima factotum presso la nobiltà e il clero di Angoulême, e poi insegnante scolastico, fu l'assassino del re Enrico IV di Francia e la penultima persona in Francia ad essere stata condannata a morte per mezzo dello squartamento, prima di Robert François Damiens. Indice 1 Biografia 1.1 La famiglia 1.2 La carriera 1.3 Il regicidio 1.4 La morte 2 La teoria del com...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

Period drawing of Montgolfier hot air balloon that made the first confirmed flight by man in 1783 This is a list of firsts in aviation. For a comprehensive list of women's records, see Women in aviation. First person to fly The first flight (including gliding) by a person is unknown. A number have been suggested: 1920 Stained glass window of the monk Eilmer of Malmesbury holding his wings (early 11th century) In 559 A.D., several prisoners of Emperor Wenxuan of Northern Qi, including Yuan Hu...

 

Video game series and media franchise This article is about the series. For the first game, see Danganronpa: Trigger Happy Havoc. For the anime, see Danganronpa: The Animation. Video game seriesDanganronpaGenre(s)Adventure, murder mystery, visual novel, shooterDeveloper(s)SpikeSpike ChunsoftPublisher(s)JP: Spike, Spike ChunsoftWW: NIS America, Spike ChunsoftEU: NIS America, Spike Chunsoft, Numskull Games[1]Creator(s)Kazutaka KodakaPlatform(s)PlayStation Portable, Android, iOS, PlaySt...

 

1918 peace treaty during World War I Not to be confused with the contemporaneous Treaty of Brest-Litovsk between Russia and the Central Powers. Treaty of Brest-Litovsk(9 February 1918)BrotfriedenБерестейський мирSigning of the Peace Treaty of Brest-Litovsk during the night of 9-10 February 1918. Sitting in the middle from the left: Count Ottokar Czernin, Richard von Kühlmann and Vasil RadoslavovSigned9 February 1918LocationBrest-Litovsk, Grodno Governorate (German occupation)...

Part of the LGBT rights seriesLegal status ofsame-sex unions Marriage Andorra Argentina Australia Austria Belgium Brazil Canada Chile Colombia Costa Rica Cuba Denmark Ecuador Estonia Finland France Germany Greece Iceland Ireland Liechtenstein* Luxembourg Malta Mexico Nepal Netherlands1 New Zealand2 Norway Portugal Slovenia South Africa Spain Sweden Switzerland Taiwan United Kingdom3 United States4 Uruguay Recognized Israel5 Civil unions andregistered partnerships Bolivia Croatia Cyprus Czech...

 

明朝关西八卫 赤斤蒙古卫,明朝关西八卫之一,简称赤斤卫,又作赤金卫。 明朝 明朝永乐二年(1404年)元朝丞相苦术之子塔力尼投降明朝,以其所部在赤斤站设置赤斤蒙古千户所,在今甘肃省玉门市西北赤金堡。永乐八年(1410年)升为赤斤卫,正德年间被吐鲁番汗国所破,当地人内徙肃州的南山,赤斤城空。 清朝 清圣祖康熙五十七年(1718年),恢复赤金卫,清世宗雍正...

 

Pre-eminent council for the French language French Academy redirects here. For other uses, see French Academy (disambiguation). Académie FrançaiseInstitut de France buildingFormation22 February 1635; 389 years ago (22 February 1635)FounderCardinal RichelieuHeadquartersParis, FranceCoordinates48°51′26″N 2°20′13″E / 48.8573°N 2.337°E / 48.8573; 2.337Membership 40 members known as les immortels (the immortals)Perpetual SecretaryAmin Maalouf (sin...

Sân vận động Banc of CaliforniaKhán đài phía Đông trên Đường FigueroaSân vận động Banc of CaliforniaVị trí ở Vùng đô thị L.A.Xem bản đồ vùng đô thị Los AngelesSân vận động Banc of CaliforniaVị trí ở CaliforniaXem bản đồ CaliforniaSân vận động Banc of CaliforniaVị trí ở Hoa KỳXem bản đồ Hoa KỳĐịa chỉ3939 Đường South FigueroaVị tríLos Angeles, California, Hoa KỳTọa độ34°00′47″B 118°17′06″...

 

Polyhedron with non-planar faces In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces.[1] Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra. History According to Coxeter, in 1926 John Fl...