Classification d'un polymère

Selon leur origine

Selon la composition chimique de leur chaîne squelettique

Un polymère peut être :

  • organique ;
  • inorganique : les polymères inorganiques sont des polymères dont le squelette ne comporte pas d'atomes de carbone ;
  • hybride : les polymères hybrides sont des polymères qui comprennent des composés organiques et inorganiques.

Un polymère peut être aussi :

  • homo-chaînes : un polymère homo-chaîne a une chaîne principale construite avec les atomes d'un seul élément ;
  • hétéro-chaînes : un polymère hétéro-chaîne a une chaîne principale construite avec les atomes de plus d'un type d'éléments.

Exemples de polymères organiques homo-chaînes carbone-carbone :

Exemples de polymères organiques hétéro-chaînes carbonées-hétéroatome : les familles de polymères les plus connues sont listées ci-dessous selon le groupe fonctionnel constituant leur chaîne squelettique :

Selon leur masse molaire moyenne

Pour qu’un polymère aient des propriétés mécaniques intéressantes, il faut que sa masse molaire moyenne atteint et dépasse une certaine valeur critique. Cette valeur dépend de la nature du polymère, mais elle est approximativement située entre 2 000 et 10 000 g/mol[2]. Au-dessous de cette valeur, on parle d'oligomère.

Selon le nombre de type d'unités répétitives

  • Les homopolymères : ce sont des polymères composés d'un seul type d'unité répétitive. La présence d'une seule unité résulte le plus souvent de la polymérisation d'un seul type de monomère : polyéthylène, polystyrèneetc.
  • Les copolymères : ce sont des polymères composés d'au moins deux types d'unités répétitives. Ces matériaux possèdent des propriétés physico-chimiques et mécaniques intermédiaires avec celles obtenues sur les homopolymères correspondants : ABS

Selon leurs propriétés thermomécaniques

Types de polymères.
  • Les polymères thermoplastiques : ce sont des polymères linéaires (ou monodimensionnels), issus de la polymérisation de monomères bivalents. Les unités monomères sont liées de façon covalente. Ils deviennent malléables quand ils sont chauffés, ce qui permet leur mise en forme.
  • Les polymères thermodurcissables : ils durcissent de façon irréversible sous l'action de la chaleur et/ou par ajout d'un réactif, les liaisons covalentes se développent dans les trois dimensions, ce sont des polymères tridimensionnels.
  • Élastomères : selon le type de réticulation, les élastomères sont classés en deux familles :

Selon l'architecture de leur chaîne

Selon le type d'enchaînement des unités répétitives, les polymères peuvent être classés en :

Selon leur état physique

Un polymère peut se présenter à température ambiante à l'état liquide (plus ou moins visqueux) ou solide.

Selon leur cristallinité

Le tableau suivant compare ces deux familles de polymères.

Paramètres Polymères amorphes Polymères semi-cristallins
Structure du polymère Inorganisés : chaînes très ramifiées, désordonnées ou en pelotes Organisées : chaînes alignées, ordonnées et symétriques
Propriétés mécaniques Tenue au fluage et au choc, difficile à étirer (peu de fibres ou de films) Résistance à la fatigue dynamique, bonnes propriétés d'écoulement (possibilité de fabriquer des fibres et des films)
Propriétés optiques Transparents quand ils ne sont pas modifiés, chargés ou colorés Translucides ou opaques
Propriétés thermiques Ramollissement progressif par élévation de température Intervalle de point de fusion étroit qui permet une transition rapide de l'état solide ou pâteux à l'état fluide, par élévation de température
Propriétés chimiques Bonne tenue chimique en particulier aux hydrocarbures et solvants
Domaine de température d'utilisation < ou > Tv (température de transition vitreuse) < Tf (température de fusion)
Domaine de température de déformation > Tv > Tf
Exemples PMMA, polycarbonate de bisphénol A, PS et ses copolymères PE, PPi, PA

Selon le nombre de liaisons entre les unités constitutives

  • Polymères monocaténaires : les unités constitutives adjacentes sont connectées entre elles par deux atomes, un d'un côté et un de l'autre côté de chaque unité constitutive.
  • Polymères bicaténaires : les unités constitutives adjacentes sont connectées entre elles par trois ou quatre atomes, deux d'un côté et un ou deux de l'autre côté de chaque unité constitutive.
    • Polymères spiraniques : les unités constitutives adjacentes sont connectées entre elles par trois atomes, deux d'un côté et un de l'autre côté de chaque unité constitutive.
    • Polymères en échelle : les unités constitutives adjacentes sont connectées entre elles par quatre atomes, deux d'un côté et deux de l'autre côté de chaque unité constitutive.
  • Polymères multicaténaires (n-caténaires) : les unités constitutives adjacentes sont connectées entre elles par plus de quatre atomes, plus que deux sur au moins un côté de chaque unité constitutive[3].

Selon l'aromaticité de leur chaîne squelettique

  • Polymères aliphatiques : fabriqués à partir de monomères aliphatiques.
  • Polymères semi-aromatiques : fabriqués à partir d'un mélange de monomères aliphatiques et aromatiques.
  • Polymères aromatiques (les polyaromatiques) : fabriqués à partir de monomères aromatiques.

L'augmentation de l'aromaticité des polymères augmente leur résistance :

Les polymères semi-aromatiques ont des températures de fusion élevées donc leur mise en œuvre se fait à des températures plus élevées que celles utilisées pour les polymères aliphatiques.

Les polymères aromatiques n'ont généralement pas de point de fusion ce qui rend leur mise en œuvre encore plus difficile.

Concerne uniquement les polymères résultants d'une polymérisation en chaîne. Les polymères peuvent avoir les tacticités suivantes :

  • Polymères stéréo-irréguliers ou atactiques : les substituants sont positionnés aléatoirement.
  • Polymères stéréoréguliers :
    • polymères isotactiques : tous les substituants sont du même côté de la chaîne ;
    • polymères syndiotactiques : les substituants sont répartis alternativement d'un côté et de l'autre de la chaîne.

Concerne uniquement les polymères résultants d'une polymérisation en chaîne. L'enchaînement des motifs peut se faire en :

  • Tête à queue : CH2-CH-R - CH2-CH-R : cas le plus fréquent.
  • queue à queue : R-CH-CH2 - CH2-CH-R.
  • Tête à tête  : CH2-CH-R - R-CH-CH2.

Selon l'isomérie cis-trans

Concerne uniquement les polymères résultants de la polymérisation des 1,3-diènes. Les polymères peuvent être cis, trans ou une combinaison des deux.

Selon leur charge ionique

Selon leurs propriétés électriques

Selon leurs propriétés thermiques

Selon leurs propriétés optiques

  • Polymères opaques.
  • Polymères translucides.
  • Polymères transparents : verres organiques : polycarbonate de bisphénol A, polyméthacrylate de méthyle.

Références

  1. (en) « biopolymers », IUPAC, Compendium of Chemical Terminology [« Gold Book »], Oxford, Blackwell Scientific Publications, 1997, version corrigée en ligne :  (2019-), 2e éd. (ISBN 0-9678550-9-8)
  2. Serge Étienne, Laurent David, Émilie Gaudry, Philippe Lagrange, Julian Ledieu et Jean Steinmetz, « Les matériaux de A à Z - 400 entrées et des exemples pour comprendre », Dunod, 2008
  3. [PDF] Glossaire des termes de base en science des polymères

Articles connexes