Al-Watan (Tunisie)
|
Read other articles:
President of Serbia (2012–2017) Tomislav NikolićТомислав НиколићNikolić in 20124th President of SerbiaIn office31 May 2012 – 31 May 2017Prime MinisterMirko CvetkovićIvica DačićAleksandar VučićPreceded byBoris TadićSlavica Đukić Dejanović (acting)Succeeded byAleksandar VučićPresident of the National AssemblyIn office8 May 2007 – 13 May 2007Preceded byPredrag MarkovićBorka Vučić (acting)elecSucceeded byMilutin Mrkonjić (acting)Oliver Duli�...
Artikel ini bukan mengenai sangketan. Wikispecies mempunyai informasi mengenai Jarong. Jarong Achyranthes aspera TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsOrdoCaryophyllalesFamiliAmaranthaceaeSubfamiliAmaranthoideaeGenusAchyranthesSpesiesAchyranthes aspera Linnaeus, 1753 lbs Jarong (Achyranthes aspera) (nama lokal lainnya; jarongan (Btw.), jarong lalaki (Sd.), jarong (Jw.), nyarang (Mdr.), sangko hidung (Mly.), rai-rai dod...
Flare gun Sturmpistole A Sturmpistole with Panzerwurfkörper 42 being demonstrated to German troops, Russia (1943)TypeFlare gunPlace of origin Nazi GermanyService historyIn serviceWorld War IIUsed byGermanySpecificationsMass2.5 kg (5 lb 8 oz)LengthButt extended: 584 mm (23 in)Butt folded: 305 mm (12 in)Barrel length180 mm (7.1 in)CartridgeFlareSmokePanzerwurfkörper 42Wurfgranate Patrone 326Wurfkorper 361Caliber23 ...
هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...
Эта статья об одном из русских княжеств XII—XV веков. О восточнославянском государстве, образовавшемся в IX веке, см. статью Киевская Русь. О центре русов в IX веке, см. статью Южная Русь (IX век). Историческое государствоКиевское княжество Знак на монете Владимира Ольгердовича...
周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...
此條目可参照英語維基百科相應條目来扩充。 (2022年1月1日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 奥斯卡尔·托尔普出生1893年6月8日 逝世1958年5月1日 (64歲)奥斯陆 職業政治人物 政党工党...
Canadian screenwriter (born 1978) Terri TatchellTatchell in October 2009Born (1978-01-01) January 1, 1978 (age 46)Toronto, Ontario, CanadaOccupation(s)Screenwriter, Children's WriterYears active2006–presentSpouseNeill BlomkampChildren1 Terri Tatchell (born January 1, 1978) is a Canadian screenwriter, best known for co-writing the screenplay of District 9[1] and was nominated for Best Adapted Screenplay at the 82nd Academy Awards.[2] Career Tatchell graduated in 200...
Vinča-Belo BrdoВинча-Бело брдоSitus Vinča-Belo BrdoLokasiVinča, SerbiaKoordinat44°45′43″N 20°37′23″E / 44.76194°N 20.62306°E / 44.76194; 20.62306Koordinat: 44°45′43″N 20°37′23″E / 44.76194°N 20.62306°E / 44.76194; 20.62306JenisPermukimanLuas10 ha (25 ekar)SejarahDidirikanSekitar 5700 SMPeriodeNeolitikum, Zaman Tembaga, Zaman Perunggu, Zaman Besi, Abad PertengahanBudayaStarčevo, Vinča, Bodrogkereszt�...
Method of agriculture meant to be environmentally friendly The article's lead section may need to be rewritten. Please help improve the lead and read the lead layout guide. (May 2023) (Learn how and when to remove this message) Agriculture History Prehistory Neolithic Revolution Agriculture in Mesoamerica Austronesian expansion Ancient history Ancient Egypt Ancient Greece Ancient Rome Post-classical Agriculture in the Middle Ages Arab Agricultural Revolution Columbian exchange Modern history ...
Inspektorat Jenderal Kementerian Luar Negeri Republik IndonesiaSusunan organisasiInspektur JenderalIbnu WahyutomoKantor pusatJl. Pejambon No.6. Jakarta Pusat, 10110Situs webwww.kemlu.go.id Inspektorat Jenderal Kementerian Luar Negeri Republik Indonesia disingkat Itjen Kemlu RI merupakan unsur pengawas di Kementerian Luar Negeri Republik Indonesia. Itjen Kemlu RI berada di bawah dan bertanggung jawab kepada Menteri. Itjen Kemlu RI dipimpin oleh Inspektur Jenderal.[1] Tugas dan fun...
The first technical exposition of a practical nuclear weapon Blue plaque to physicists Frisch and Peierls on the wall of the Poynting Physics Building, University of Birmingham The Frisch–Peierls memorandum was the first technical exposition of a practical nuclear weapon. It was written by expatriate German-Jewish physicists Otto Frisch and Rudolf Peierls in March 1940 while they were both working for Mark Oliphant at the University of Birmingham in Britain during World War II. The memorand...
American politician (1750-1818) For the American diplomat and scholar, see Robert R. Bowie. Robert BowieGovernor of MarylandIn officeNovember 15, 1803 – November 12, 1806Preceded byJohn F. MercerSucceeded byRobert WrightIn officeNovember 16, 1811 – November 23, 1812Preceded byEdward LloydSucceeded byLevin WinderMember of the Maryland House of DelegatesIn office1785–1790In office1801–1803 Personal detailsBornMarch 1750 (1750-03)Prince George's County, Province of...
28 September 1941. Personel dar i King's African Rifles (KAR) mengumpulkan senjata yang diserahkan oleh tentara Italia di Wolchefit, Ethiopia, dengan berakhirnya Kampanye Afrika Timur. King's African Rifles (KAR) adalah resimen multi-batalion Britania yang diangkat dari berbagai jajahan Britania di Afrika Timur dari tahun 1902 sampai kemerdekaan tahun 1960-an. KAR berfungsi sebagai keamanan internal dan militer di koloni Afrika Timur. Daftar pustaka Mollo, Andrew (1981). The armed forces of W...
Quinto RomanoLa chiesa della Madonna della Divina Provvidenza Stato Italia Regione Lombardia Provincia Milano Città Milano CircoscrizioneMunicipio 7 Altitudine131 m s.l.m. Abitanti8000 Nome abitantiromaniani Quinto RomanoQuinto Romano (Milano) Quinto Romano (Quint in dialetto milanese, IPA: [ˈkwint]) è un quartiere di Milano appartenente al Municipio 7. Circondato da Parco delle Cave, Boscoincittà e Parco di Trenno, Quinto Romano sorge al centro del grande polmone verd...
Statue outside Pride Park Stadium of Derby County's 1972 Football League-winning manager Brian Clough and his assistant Peter Taylor, who also managed the club Derby County is an English association football club based in Derby, Derbyshire. The club was formed in 1884 but didn't appoint a full-time manager until 1896; prior to this the team for each match was selected by committee, a common practice in the early days of professional football. This chronological list comprises all those who h...
Damallsvenskan Eskilstuna United mot FC Rosengårdpå Tunavallen, 5 augusti 2015.Säsong2015Nya lag för säsongenMallbackens IFHammarby IFVinnareFC Rosengård (10)NedflyttadeAIKHammarby IFChampions LeagueFC RosengårdEskilstuna UnitedStatistikSpelade matcher132Totalt antal mål385 (2,9 per match)Bästa målgörareGaëlle Enganamouit, Eskilstuna (18 mål)Största hemmavinstRosengård 7–0 Kristianstad(21 maj 2015)Största bortavinstAIK 0–5 Kristianstad(9 maj 2015)A...
MontautcomuneLocalizzazioneStato Francia Regione Nuova Aquitania Dipartimento Pirenei Atlantici ArrondissementPau CantoneVallées de l'Ousse et du Lagoin TerritorioCoordinate43°07′51″N 0°11′57″W43°07′51″N, 0°11′57″W (Montaut) Altitudine315 m s.l.m. Superficie15,41 km² Abitanti1 127[1] (2009) Densità73,13 ab./km² Altre informazioniCod. postale64800 Fuso orarioUTC+1 Codice INSEE64400 CartografiaMontaut Sito istituzionaleModifica ...
2010 film Uncle Boonmee Who Can Recall His Past LivesEnglish-language release poster by Chris WareThaiลุงบุญมีระลึกชาติ Directed byApichatpong WeerasethakulWritten byApichatpong WeerasethakulBased onA Man Who Can Recall His Past Livesby Phra SripariyattiwetiProduced bySimon FieldKeith GrifithCharles de MeauxApichatpong WeerasethakulStarringThanapat SaisaymarJenjira PongpasSakda KaewbuadeeCinematographySayombhu MukdeepromYukontorn MingmongkonCharin PengpanichE...
Il teorema fondamentale dell'algebra asserisce che ogni polinomio in una variabile di grado n ≥ 1 {\displaystyle n\geq 1} (cioè non costante) con coefficienti complessi, del tipo a n z n + … + a 1 z + a 0 , {\displaystyle a_{n}z^{n}+\ldots +a_{1}z+a_{0},} ammette almeno una radice complessa (o zero). Equivalentemente (per definizione) il teorema asserisce che il campo dei numeri complessi è algebricamente chiuso. Dal teorema segue che un polinomio a coefficienti complessi amme...