Lauseen avulla voidaan siis laskea suorakulmaisen kolmion tuntemattoman sivun pituus, jos muiden sivujen pituudet tunnetaan. Se on käytännön sovellusten kannalta tärkeimpiä matematiikan yksittäisiä tuloksia, mm. siksi, että se mahdollistaa suorakulmaisen koordinaatiston pisteiden etäisyyden määrittämisen pisteiden koordinaattien avulla. Lause on nimetty kreikkalaisenmatemaatikonPythagoraan mukaan. Lauseen sisältö on kuitenkin tunnettu jo mesopotamialaisessa laskennossa noin 2000 eaa., ja vuoteen 1650 eaa. ajoitetun Rhindin papyruksen perusteella voidaan päätellä sen olleen tunnettu myös Egyptissä.[1]
Pythagoraan lauseen sisältö voidaan ilmaista yhtälönä , jossa ja ovat suoran kulman muodostavien sivujen eli kateettien pituudet ja pisimmän sivun eli hypotenuusan pituus.
Yhtälöstä voidaan ratkaista
, ja .
Pythagoraan lause on erikoistapaus kosinilauseesta. Kosinilausetta kutsutaan usein myös laajennetuksi Pythagoraan lauseeksi.
Pythagoraan lauseelle on olemassa satoja todistuksia. On myös perustettu järjestö, joka kerää todistuksia kyseiselle lauseelle. Seuraavassa eräs tapa todistaa lause paikkansapitäväksi[2]:
Todistus: Olkoon suorakulmaisen kolmion hypotenuusa ja kateetit sekä . Osoitetaan, että hypotenuusan neliö on yhtä suuri kuin kateettien neliöiden summa.
Piirretään neliö, jonka yhden sivun pituus on suorakulmaisen kateettien summa eli . Valitaan neliön sivuilta pisteet , , ja niin, että . Silloin , ja suorakulmaiset kolmiot , , ja ovat yhteneviä. Siis . Edelleen ja . Koska kolmio on suorakulmainen, . Siis . Samalla tavalla nähdään, että nelikulmion muutkin kolme kulmaa ovat suoria kulmia. Nelikulmio on siis neliö, ja sen ala on .
Jokaisen neljän yhtenevän suorakulmaisen kolmion ala on . Neliön ala on
. Toisaalta neliön ala on . Siis .
Yksinkertaisin todistus. Luultavasti yksinkertaisin Pythagoraan lauseen todistus nojautuu tietoon, jonka mukaan yhdenmuotoisten monikulmioiden alojen suhde on sama kuin niiden minkä tahansa vastinsivujen neliöiden suhde. Jos suorakulmaiseen kolmioon , missä , piirretään korkeusjana , niin kolmiot , ja ovat yhdenmuotoisia suorakulmaisia kolmioita. Niissä , ja ovat vastinsivuja. Kolmioiden alat ovat , ja , missä on jokin verrannollisuuskerroin. Koska kolmioista ensimmäisen ala on sama kuin kahden jälkimmäisen alojen summa, on
.
Kun supistetaan pois, saadaan Pythagoraan lause.
Vielä eräs tapa Pythagoraan lauseen todistamiseksi on esitetty ohessa animaationa.
Pythagoraan lauseen käänteislause
Pythagoraan lauseelle käänteinen väittämä on myös voimassa: jos kolmion kahden lyhemmän sivun neliöiden summa on yhtä kuin pisimmän sivun neliö, on kolmio suorakulmainen. Esimerkiksi , joten on olemassa suorakulmainen kolmio, jonka sivut ovat 3, 4 ja 5 yksikköä pitkät. Tätä tietoa on arveltu egyptiläisten pyramidien rakentajien käyttäneen suoran kulman määrittämiseen: lenkiksi liitetty pitkä solmunaru, jossa oli yhteensä 12 solmua tasavälein, vedettiin kolmioksi, jossa oli kolmen, neljän ja viiden solmuvälin sivut, ja näin saatiin aikaan suora kulma.
Pythagoraan lauseen käänteislause on helppo todistaa epäsuorasti Pythagoraan lauseeseen nojautumalla.