Revolución Oriental

Read other articles:

Chemical compound 5α-DihydrolevonorgestrelClinical dataOther names5α-Dihydrolevonorgestrel; 5α-DHLNG; 5α-LNGIdentifiers IUPAC name (5S,8R,9R,10S,13S,14S,17R)-13-Ethyl-17-ethynyl-17-hydroxy-1,2,4,5,6,7,8,9,10,11,12,14,15,16-tetradecahydrocyclopenta[a]phenanthren-3-one CAS Number78088-19-4PubChem CID9995794ChemSpider8171375UNII7Z4S6960I5Chemical and physical dataFormulaC21H30O2Molar mass314.469 g·mol−13D model (JSmol)Interactive image SMILES CC[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@]2(C#C)...

 

 

SMA Negeri 1 Ngawi InformasiDidirikanBerdiri sejak 30 Juli 1980 sebagai SMA Negeri Ngawi berdasarkan No. SK. Pendirian = 0206/O/1980. Berubah nama menjadi SMAN 1 Ngawi pada 24 Agustus 1989 berdasarkan: No. SK. Operasional = 0507/08/1989JenisNegeriAkreditasiA [1] No. SK. Akreditasi = 1347/BAN-SM/SK/2021 Tanggal SK. Akreditasi = 8 Desember 2021Nomor Pokok Sekolah Nasional20508480MotoQualified Dream SchoolKepala SekolahSunarta S.Pd Jurusan atau peminatanIPA dan IPSKurikulumKurikulum...

 

 

Cricket tournament 2019–20 Ranji Trophy Group CThe Ranji Trophy, awarded to the winnersDates9 December 2019 (2019-12-09) – 15 February 2020 (2020-02-15)Administrator(s)BCCICricket formatFirst-class cricketTournament format(s)Round-robinHost(s) IndiaParticipants10← 2018–19 2019–20 Indian domestic cricket season Men Duleep Trophy Vijay Hazare Trophy (Group A, Group B, Group C, Plate Group) Deodhar Trophy Syed Mushtaq Ali Trophy (Group A, Group B,...

Device which reduces humidity This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dehumidifier – news · newspapers · books · scholar · JSTOR (July 2011) (Learn how and when to remove this template message) A typical portable dehumidifier can be moved about on built-in casters. A dehumidifier is an air conditioni...

 

 

Nassarius Nassarius graniferusClassification WoRMS Règne Animalia Embranchement Mollusca Classe Gastropoda Sous-classe Caenogastropoda Ordre Neogastropoda Super-famille Buccinoidea Famille Nassariidae Sous-famille Nassariinae GenreNassariusDuméril, 1806[1] Nassarius est un genre de mollusques gastéropodes de la famille des Nassariidae. Historique et dénomination Le genre Nassarius a été décrit par le malacologue français André Marie Constant Duméril en 1806. Écologie Les Nassarius...

 

 

2018 United States House of Representatives elections in Michigan ← 2016 November 6, 2018 (2018-11-06) 2020 → All 14 Michigan seats to the United States House of RepresentativesTurnout57.8%   Majority party Minority party   Party Democratic Republican Last election 5 9 Seats before 4 9 Seats won 7 7 Seat change 2 2 Popular vote 2,165,586 1,847,480 Percentage 52.33% 44.65% Swing 5.36% 3.38% Congressional district results ...

Daerah artikulasi Labial     Bilabial         Labial–velar         Labial–alveolar     Labiodental Koronal     Linguolabial     Interdental     Dental     Alveolar     Alveolar belakang         Palato-alveolar    ...

 

 

1982 South Korean filmCome Unto DownTheatrical posterHangul낮은 데로 임하소서Revised RomanizationNajeun dero imhasoseoMcCune–ReischauerNajŭn tero imhasosŏ Directed byLee Jang-ho[1]Written byYoon Jae-seopIm Jin-taekLee Jang-hoBased onCome Down to a Lower Placeby Lee Cheong-junProduced byPark Jong-chanStarringLee Yeong-hoCinematographySeo Jeong-minEdited byKim Hee-sooMusic byKim Do-hyangDistributed byHwaCheon Trading Co.Release date June 26, 1982 (1982-06-26) ...

 

 

Cet article est une ébauche concernant l’animation et la bande dessinée asiatiques. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Voir aussi : 2023 au cinéma - 2023 à la télévision Chronologies Données clés 2020 2021 2022  2023  2024 2025 2026Décennies :1990 2000 2010  2020  2030 2040 2050Siècles :XIXe XXe  XXIe  XXIIe XXIIIeMillénaires :Ier IIe &#...

Otto IIIMarkgraf BrandenburgMonumen Otto III (berdiri) dan saudaranya Johann I di Siegesallee, Berlin, oleh Max Baumbach.Markgraf BrandenburgBerkuasa1220–1267PendahuluAlbrecht IIPenerusOtto IVInformasi pribadiKelahiran1215Kematian9 Oktober 1267Brandenburg an der HavelPemakamanGereja di biara Dominikan di StrausbergWangsaWangsa AscaniaAyahAlbrecht IIIbuMathilde dari LausitzPasanganBožena ČeskáAnakJohann III dari BrandenburgOtto V dari BrandenburgAlbrecht III dari BrandenburgOtto VI dari B...

 

 

NGC 3535   الكوكبة الأسد[1]  رمز الفهرس NGC 3535 (الفهرس العام الجديد)PGC 33760 (فهرس المجرات الرئيسية)IRAS F11059+0506 (IRAS)2MASX J11083390+0449545 (Two Micron All-Sky Survey, Extended source catalogue)UGC 6189 (فهرس أوبسالا العام)IRAS 11059+0505 (IRAS)MCG+01-29-004 (فهرس المجرات الموروفولوجي)SDSS J110833.92+044954.8 (مسح سلون الرقمي للسماء)Z 39-10 (فهرس ...

 

 

Norberto Bobbio Premio Artigiano della Pace 1985[1][2] Premio Balzan 1994[2][3] Premio Hegel 2000[2][4] Senatore a vita della Repubblica ItalianaDurata mandato18 luglio 1984 –9 gennaio 2004 LegislaturaIX, X, XI, XII, XIII, XIV GruppoparlamentarePSI (1984 – 1991)Gruppo misto (1991 – 1996)PDS (1996 – 1998)DS (1998 – 2004) CoalizioneL'Ulivo (dal 30 maggio 2001) Tipo nominaNomina presidenziale di Sandro Pe...

Railway station in Pakistan This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Vehari railway station – news · newspapers · books · scholar · JSTOR (October 2019) (Learn how and when to remove this message) Vehari Railway Stationوہاڑی ریلوے اسٹیشنGeneral informationCoordinates30°02′42″N 72°21′00″E / 30.0451°N 72.3...

 

 

Macan tutul afrika Panthera pardus pardus TaksonomiKelasMammaliaOrdoCarnivoraSuperfamiliFeloideaFamiliFelidaeGenusPantheraSpesiesPanthera pardusSubspesiesPanthera pardus pardus Linnaeus, 1758 Tata namaSinonim taksonFelis leopardus (en) Panthera pardus reichenowi (en) Distribusi Macan tutul afrika (Panthera pardus pardus) adalah upaspesies macan yang merupakan hewan asli dan dijumpai di banyak negara pada benua Afrika. Hewan ini tersebar luas di sebagian besar sub-Sahara Afrika, tetapi rentang...

 

 

В Википедии есть статьи о других людях с фамилией Рич. Эдмунд Ричангл. Edmund RichАрхиепископ Кентерберийский Портрет Эдмунда в Нюрнбергской хронике. Родился 20 ноября 1175(1175-11-20)Абингдон, Оксфордшир, Англия Умер 16 ноября 1240(1240-11-16) (64 года)Суаси Род деятельности католический с...

Chronologies 4 juin : Transfert des cendres de Zola au Panthéon.Données clés 1905 1906 1907  1908  1909 1910 1911Décennies :1870 1880 1890  1900  1910 1920 1930Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, Républiqu...

 

 

In graph theory, edges incident/directed between the same vertices Multiple edges joining two vertices. In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and no loops. Depending on the context, a graph may be defined so as to either allow or ...

 

 

Questa voce sull'argomento pattinatori su ghiaccio canadesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Willy LoganNazionalità Canada Pattinaggio di velocità Palmarès Competizione Ori Argenti Bronzi Giochi olimpici 0 0 2 Vedi maggiori dettagli  Modifica dati su Wikidata · Manuale Willy Logan, vero nome William Frederick Logan (Saint John, 15 marzo 1907 – 6 novembre 1955), è stato un pattinatore di velocità su ghiaccio canade...

  لمعانٍ أخرى، طالع كينغمان (توضيح). كينغمان    علم   الإحداثيات 37°38′49″N 98°06′50″W / 37.6469°N 98.1139°W / 37.6469; -98.1139   [1] تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة كينغمان  عاصمة لـ مقاطعة كينغمان  خصائص جغرافية ...

 

 

Set of the elements not in a given subset If A is the area colored red in this image…… then the complement of A is everything else. In set theory, the complement of a set A, often denoted by A ∁ {\displaystyle A^{\complement }} (or A′),[1] is the set of elements not in A.[2] When all elements in the universe, i.e. all elements under consideration, are considered to be members of a given set U, the absolute complement of A is the set of elements in U that are not i...