Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí. Este aviso fue puesto el 25 de octubre de 2019.
Los cohetes químicos de impulsos específicos más altos (cohetes de propulsores líquido) utilizan propelentes de combustible líquido . Aproximadamente 170 propulsores líquidos diferentes han sido sometidos a pruebas de laboratorio. Esta estimación excluye cambios menores a un propulsor específico tales como aditivos propulsores, inhibidores de corrosión o estabilizantes. En los Estados Unidos solo se han hecho al menos 25 combinaciones de propulsantes diferentes.[1] Sin embargo, no ha habido un propulsor completamente nuevo usado en vuelo durante casi 30 años.[2] Muchos factores entran en la elección de un propelente para un motor de cohete de propulsor líquido. Los factores principales incluyen la facilidad de operación, costo, peligros / ambiente y funcionamiento. Los bipropelentes pueden ser propulsores hipergólicos o no hipergólicos. Una combinación hipergólica de oxidante y combustible comenzará a quemarse al contacto. Un no hipergólico necesita una fuente de ignición.[3]
Historia
Desarrollo inicial
El 16 de marzo de 1926, Robert H. Goddard utilizó oxígeno líquido (LOX) y gasolina como propulsores para su primer lanzamiento de cohete de combustible líquido parcialmente exitoso. Los dos líquidos son fácilmente obtenibles, baratos y altamente energéticos. El oxígeno es un criógeno moderado, por lo que el aire no se licuará en contacto con un tanque de oxígeno líquido. En consecuencia, es posible almacenar LOX brevemente en un cohete sin aislamiento excesivo. La gasolina ha sido reemplazada desde entonces por diferentes hidrocarburos combustibles, como por ejemplo el RP-1 -un tipo de queroseno de grado elevado altamente refinado. Esta combinación propelente es muy práctica para cohetes que no necesitan ser almacenados durante mucho tiempo, y hasta el día de hoy, se utiliza en las primeras etapas de muchos lanzadores orbitales.
Tabla
Definiciones
Ve
Velocidad media de escape, m/s. La misma medida que el impulso específico en diferentes unidades, numéricamente igual al impulso específico en N·s/kg.
r
Proporción de mezcla: masa oxidante / combustible de masa
Tc
Temperatura de la cámara, °C
d
La densidad a granel de combustible y oxidante, en g/cm³
C*
Velocidad característica, m/s. Igual a la presión de la cámara multiplicada por el área de la garganta, dividida por el caudal másico. Se utiliza para comprobar la eficiencia de la combustión del cohete experimental.
No tiene todos los datos para CO / O2, destinados a la NASA para cohetes basados en Marte, solo un impulso específico de unos 250 s.
r
Proporción de mezcla: masa oxidante / combustible de masa
Ve
Velocidad media de escape, m/s. La misma medida que el impulso específico en diferentes unidades, numéricamente igual al impulso específico en N·s/kg.
C*
Velocidad característica, m/s. Igual a la presión de la cámara multiplicada por el área de la garganta, dividida por el caudal másico. Se utiliza para comprobar la eficiencia de la combustión del cohete experimental.
Tc
Temperatura de la cámara, °C
d
La densidad a granel de combustible y oxidante, en g/cm³