X es un espacio normal si y sólo si, dado cualquier par de conjuntos cerradosdisjuntosE y F, existen dos entornosU de E y otro V de F, también disjuntos.
Los conjuntos cerrados E y F, aquí representados mediante discos cerrados en lados opuestos de la imagen, están separados por sus respectivos entornos U y V, aquí representados por discos abiertos mayores pero aún disjuntos.
X se dice que es un Espacio T4, si es normal y Hausdorff.
X es un espacio completamente normal si cada subespacio de X es normal.
Con lo que X es completamente normal si y sólo si todo par de conjuntos separados pueden ser separados por entornos.
X es un espacio T5, o un espacio completamente T4, si es completamente normal y Hausdorff, o, equivalentemente, si cada subespacio de X es T4.
X es un espacio perfectamente normal si es normal y todo cerrado suyo es un conjunto Gδ (es decir, es intersección de una cantidad numerable de abiertos). Además, se tiene que X es un espacio perfectamente normal si y solo si para todo cerrado no vacío C de X existe una función continua tal que .