Escuela de Kerala

La Escuela de Kerala fue una escuela de matemática y astronomía fundada por Madhava en Kherala (sur de la India) que incluía como miembros destacados a Paramésuara, Damodara, Nilakantha Somayaji, Jyeshtadeva, Sankara Variyar, Achyuta Pisharati, Achyuta Panikkar y Melpathur Narayana Bhattathiri.

Escuela de astronomía y matemáticas de Kerala

Cadena de profesores de la escuela de Kerala.
Localización
País Zamorín
Localidad Actual Kerala, Bandera de la India India
Información
Fundación Siglo XIV
Fundador Madhava de Sangamagrama
Apertura Siglo XIV
Construcción ? - ?

Floreció entre los siglos XIV y XVI y las raíces intelectuales se remontan al s. V d. C., con los trabajos de Aryabhatta. Esta Escuela tiene una evolución rastreable hasta nuestros días, aunque los métodos de investigación finalizaron con Narayana Bhattathiri. Estos astrónomos, al intentar resolver algunos problemas, desarrollaron un notable número de ideas, que incluyen:

  • Ideas revolucionarias de cálculo.
  • Teoría de series infinitas.
  • Series de potencias.
  • Series de Taylor.
  • Pruebas de convergencia (usualmente atribuidas a Cauchy).
  • Diferenciación.
  • Integración término a término.
  • Integración numérica en términos de series infinitas.
  • La teoría que indica que el área bajo la curva es la integral de esta.
  • Métodos iterativos para solucionar ecuaciones no lineales.
  • Puntos decimales en coma flotante, sistema que permitió investigar y racionalizar la convergencia de series.

Esta escuela matemática logró estos resultados siglos antes que los matemáticos europeos. Jyeshtadeva consolidó los descubrimientos de la Escuela de Kerala en el Yuktibhasa, el primer libro de cálculo en la historia. La Escuela de Kerala también hizo contribuciones en el campo de la lingüística. Las tradiciones poéticas de Kerala fueron fundadas por esta Escuela. El poema Narayaneeyam, fue escrito por Narayana Bhattathiri.

Posible transmisión de la matemática keralense a Europa

Existe un número considerable de publicaciones, incluido un documento de gran interés escrito por D. Almeida, J. John y A. Zadorozhnyy, que sugiere la transmisión de la matemática keralense a Europa. Kerala estuvo en contacto con China, Arabia y desde el siglo XVI, con Europa, por lo que la transmisión pudo haber sido posible. Debe señalarse que no existe evidencia en cuanto a documentos relevantes se refiere, sin embargo existen similitudes en cuanto a los métodos matemáticos aplicados.

Un desarrollo clave del pre-cálculo en Europa, una generalización en el fundamento de la inducción, tiene profundas similitudes con el correspondiente desarrollo en Kerala (200 años antes). Existe además evidencia de que John Walls (1665) escribió una demostración del teorema de Pitágoras de la misma forma en que Bhaskara II lo hizo. La única manera de que los eruditos europeos pudieran estar enterados del trabajo de Bhaskara sería a través de rutas keralenses.

Aunque se cree que el cálculo keralense estuvo apartado de la civilización europea hasta el descubrimiento de Charles Whish a finales del siglo XIX, Kerala de hecho estuvo en contacto con los europeos desde que Vasco da Gama arribó en el año de 1499, cuando rutas comerciales fueron trazadas entre Kerala y Europa. Además de los comerciantes europeos, los misionarios jesuitas estuvieron presentes desde el siglo XVI. Muchos de ellos, de hecho, fueron matemáticos o astrónomos, y podían hablar lenguajes de la zona como malayalam, lo que implica que podían comprender la matemática keralense.

A finales del siglo XVII, se discutía cómo Newton y Leibniz desarrollaron el cálculo casi simultáneamente, lo que permite sugerir que ambos pudieron adquirir ideas relevantes indirectamente del cálculo keralense.

Véase también

Enlaces externos

Read other articles:

Logam yang dipanaskan akan membuat atom-atom pada logam bergetar semakin cepat. Akibatnya atom-atom tersebut menghasilkan gelombang elektromagnetik (cahaya) Proses pemanasan berkelanjutan dapat ditemukan pada matahari dan bumi. Beberapa radiasi termal matahari menyerang dan memanaskan bumi. Dibandingkan dengan matahari, bumi memiliki suhu yang jauh lebih rendah sehingga mengirimkan radiasi termal yang jauh lebih sedikit ke matahari. Panas dari proses ini dapat diukur dengan jumlah bersih, dan...

 

Untuk gedung pencakar langit di London yang dijuluki The Slinky, lihat Baltimore Tower. SlinkyTipeMainan musim semiPenemuRichard T. JamesBetty JamesPerusahaanJames IndustriesNegaraAmerika SerikatKeberadaan1945–sekarang Sebuah slinky yang terbuat dari logam Sebuah slinky yang terbuat dari plastik berwarna warni Slinky adalah mainan pegas yang ditemukan oleh Richard T. James pada awal 1940-an. Ini dapat melakukan beberapa trik, termasuk berjalan turun tangga ujung-ke-ujung sambil meregang dan...

 

Al-Shaghour (Arab: الشاغورcode: ar is deprecated ) adalah sebuah munisipalitas dan wilayah yang terletak di kota tembok lama Damaskus, Suriah, tenggara Kota Lama, dan timur al-Midan. Al-Shaghour adalah salah satu wilayah tercatat tertua di kota tersebut. Wilayah tradisional tersebut terbagi dalam bagian yang berada dalam tembok Kota Lama, yang dikenal sebagai Shaghour al-Juwani, dan bagian yang lebih besar yang terletak di luar tembok tersebut. Bagian tersebut telah menjadi sebuah mun...

MODYSON JR Southwark London Borough CouncilCoat of armsCouncil logoTypeTypeLondon borough council of the London Borough of Southwark LeadershipMayor of SouthwarkSunil Chopra, Labour since 18 May 2019 Leader of the CouncilKieron Williams, Labour since September 2020 Deputy LeaderJasmine Ali, Labour Leader of the OppositionVictor Chamberlain, Liberal Democrats Chief executiveLoderick Althea since February 2012 StructureSeats63 councillorsPolitical groupsAdministration (48)  ...

 

Pentamethylcyclopentadienyl iridium dichloride dimer Names IUPAC name Di-μ-chloro-bis[chloro(pentamethylcyclopentadienyl)iridium(III)] Other names Dichloro(pentamethylcyclopentadienyl)iridium(III) Identifiers CAS Number 12354-84-6 Y 3D model (JSmol) Interactive image ECHA InfoCard 100.205.779 PubChem CID 131674877 UNII 6OY4UUC534 InChI InChI=1S/2C10H16.4ClH.2Ir/c2*1-6-7(2)9(4)10(5)8(6)3;;;;;;/h2*6H,1-5H3;4*1H;;/p-4Key: PGQVOTGCKISIMD-UHFFFAOYSA-J SMILES c1(C)=c(C)c(C)=c(C)c1(C)[Ir...

 

Questa voce sull'argomento politici congolesi (Rep. Dem. del Congo) è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Adolphe Muzito Primo ministro della Repubblica Democratica del CongoDurata mandato10 ottobre 2008 –6 marzo 2012 PredecessoreAntoine Gizenga SuccessoreLouis Alphonse Koyagialo Dati generaliPartito politicoPartito Lumumbista Unificato Adolphe Muzito (Bandundu, 9 giugno 1957) è un politico della Repubblica Democratica ...

Disambiguazione – Se stai cercando altri significati, vedi Eros (disambigua). ErosEros che incorda l'arco - Copia romana in marmo dall'originale di Lisippo conservata nei Musei Capitolini di Roma. Nome orig.Ἔρως Lingua orig.greco antico Caratteristiche immaginarieProfessioneDio dell'amore fisico AffiliazioneDei primigeniDei olimpici (divinità minore) Eros (in greco antico: Ἔρως?, Érōs) è, nella religione greca, il dio dell'amore fisico e del desiderio[1], in...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Rabat-Salé-Kénitra – berita · surat kabar · buku · cendekiawan · JSTOR Rabat-Salé-Kénitra الرباط-سلا-القنيطرةcode: ar is deprecated   (Arab)ⴻⵕⵕⴱⴰⵟ-ⵙⵍⴰ-ⵇ...

 

The Eight Bells The Eight Bells is a grade II listed public house in Park Street, Hatfield, Hertfordshire, England.[1] The building has a timber frame from around the sixteenth century and a nineteenth-century front. Literary associations The pub has associations with the author Charles Dickens. Dickens is known to have stayed there in the 1830s, and it is believed to be the pub in Hatfield visited by his fictional character Bill Sikes.[2] References ^ Historic England. The E...

Alejandro Scopelli Scopelli, 1930sInformasi pribadiNama lengkap Alejandro Scopelli CasanovaTanggal lahir (1908-05-12)12 Mei 1908Tempat lahir La Plata, ArgentinaTanggal meninggal 23 Oktober 1987(1987-10-23) (umur 79)Tinggi 173 m (567 ft 7 in)Posisi bermain PenyerangKarier senior*Tahun Tim Tampil (Gol)1928–1933 Estudiantes 68 (45)1933–1935 Roma 63 (24)1936 Racing Club 0 (0)1936–1937 Red Star ? (24)1938–1939 RCF Paris 1939–1940 Belenenses 1940–1941 Benfica 1941 U...

 

  لمعانٍ أخرى، طالع الحزب الديمقراطي (توضيح). الحزب الديمقراطي   البلد إيطاليا  التأسيس تاريخ التأسيس 14 أكتوبر، 2007 المؤسسون والتر فيلتروني  اندماج الديمقراطية هي الحرية، ديمقراطيو اليسار، وأحزاب أخرى ديمقراطيو اليسار  المادة الأولى  [لغات أخرى]‏، ...

 

النِّقَابَة لغةً تعني الرئاسة وهي على وزنها (بكسر الأول لا بفتحه).[1][2][3] ويقال لكبير القوم نقيباً أو رئيساً أو عقيداً. ومن هنا جاءت تسمية نقيب الأطباء أو نقيب المعلمين وسواهما، وعلى ذلك تم تأسيس (رابطة) أو (جمعية) أو (اتحاد) لذوي المهن والحرف سميت (نقابات). وللنقاب�...

National Park in Washington, US North Cascades National ParkIUCN category II (national park)Cascade Pass and Pelton BasinLocation in WashingtonShow map of Washington (state)Location in the United StatesShow map of the United StatesLocationWhatcom, Skagit, and Chelan counties, Washington, U.S.Nearest citySedro-Woolley, WashingtonCoordinates48°49′58″N 121°20′51″W / 48.83278°N 121.34750°W / 48.83278; -121.34750[1]Area504,654 acres (2,042.26 k...

 

Atiba Hutchinson Informasi pribadiTanggal lahir 8 Februari 1983 (umur 41)Tempat lahir Brampton, Ontario, KanadaTinggi 1,87 m (6 ft 2 in)Posisi bermain GelandangInformasi klubKlub saat ini Besiktas JKNomor 13Karier junior Brampton BravesKarier senior*Tahun Tim Tampil (Gol)2002–2003 York Region Shooters 2003–2004 Toronto Lynx 4 (0)2004 Öster 24 (6)2004–2006 Helsingborg 49 (6)2006–2010 Copenhagen 139 (22)2010–2014 PSV 59 (4)2014 -- Besiktas JK Tim nasional‡2001�...

 

Sri Lankan politician Hon.Mahanama SamaraweeraMember of the Ceylon Parliamentfor MataraIn office1952 – March 1960Preceded byH. D. AbeygoonewardaneSucceeded byJustin WijayawardheneIn officeJuly 1960 – 1965Preceded byJustin WijayawardheneSucceeded byB. Y. Tudawe Personal detailsBorn(1917-10-12)12 October 1917Matara, Sri LankaDied19 March 1966(1966-03-19) (aged 48)Political partyCommunist Party of CeylonSpouse(s)Khema Padmawathi (née Amaraweera)ChildrenJaimini, Jayant...

Branch of the Russian Aerospace Forces Russian Air ForceВоенно-воздушные силы РоссииVoenno-vozdushnye sily RossiiEmblem of the VVSFounded1912[1]1992 (current form)CountryRussiaTypeAir forceRoleAerial warfarePart of Russian Aerospace ForcesHeadquartersArbat District, MoscowMarchAir MarchAnniversaries12 AugustEngagementsFirst Chechen WarWar of Dagestan1999 East Timorese crisisSecond Chechen WarRusso-Georgian WarAnnexation of CrimeaSyrian Civil War2022 ...

 

American football player, coach, and administrator (born 1945) American football player Garrett FordNo. 32Position:Running backPersonal informationBorn: (1945-05-04) May 4, 1945 (age 79)Washington, D.C., U.S.Career informationHigh school:DeMatha Catholic (MD)College:West VirginiaNFL draft:1968 / Round: 3 / Pick: 58Career history Denver Broncos (1968) Career highlights and awards Second-team All-American (1966) Career NFL statisticsRushing attempts–yards:41–186Rece...

 

Mountain range in Sanaag, Somalia Cal MadowOverview of the Cal Madow mountainsHighest pointElevation2,410 metres (7,907 ft)[1]Coordinates10°44′09″N 47°14′42″E / 10.73583°N 47.24500°E / 10.73583; 47.24500NamingNative nameBuuraha Calmadow (Somali)عَلَمْدُو (Arabic)GeographyCal MadowLocation in the SomalilandShow map of SomaliaCal MadowCal Madow (Africa)Show map of Africa LocationSanaag,  SomalilandParent rangeOgo Moun...

Pour les articles homonymes, voir Verse (homonymie). Cet article est une ébauche concernant l’agriculture. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Verse dans un champ de blé à la suite de pluies importantes (Épône, Yvelines). Le maïs peut être sujet à la verse du fait de sa hauteur importante. Toutefois, si la verse est légère, les plants peuvent se redresser seuls les jours suivant le coup d...

 

Ibaraki 茨城町KotaprajaBalai Kota Ibaraki BenderaEmblemLokasi Ibaraki di Prefektur IbarakiIbarakiLokasi di JepangKoordinat: 36°17′13″N 140°25′28″E / 36.28694°N 140.42444°E / 36.28694; 140.42444Negara JepangWilayahKantōPrefektur IbarakiDistrikHigashiibarakiPemerintahan • WalikotaNorio KobayashiLuas • Total121,58 km2 (46,94 sq mi)Populasi (1 Juli 2020) • Total31,596 • Kepadatan2...