Conversión interna

El término conversión interna describe los procesos intermoleculares por los cuales la molécula pasa a un estado electrónico de más baja energía sin emisión de radiación (fluorescencia). Estos procesos ni están bien definidos ni se entienden bien. Son procesos muy eficaces.

En física nuclear también se usa el término "conversión interna" cuando núcleos pesados inestables se desintegran cediendo la energía liberada a un electrón próximo desplazándolo de su orbital. Dicho modo de desexcitación compite con la desintegración . Los electrones de alta energía liberados durante la conversión interna, no son consideradas partículas ya que su origen no es la desintegración . En muchos casos se dan ambos tipos de desintegración, superponiéndose el espectro continuo de la emisión con el espectro discreto de los electrones de conversión. La vacante dejada por el electrón, suele ser ocupada por otro electrón de una capa superior con la consecuente emisión de un fotón o un electrón Auger.


Referencias

http://www.idecefyn.com.ar/radiofarmacia/Tipos%20de%20Semidesintegracion.htm

Kenneth S. Krane. Introductory Nuclear Physics, Willey 1987, ISBN 047180553X,9780471805533

Read other articles:

Canda dalam RondaAlbum studio karya Iwan FalsDirilis2 Januari 1979Direkam1979GenrePopBaladaLabelABC RecordsLembaga Humor IndonesiaKronologi Iwan Fals Canda dalam Nada(1979)Canda dalam Nada1979 Canda dalam Ronda (1979) Perjalanan (1979)Perjalanan1979 Canda dalam Ronda adalah album dari Iwan Fals yang dirilis pada tahun 1979. Masih bersama ABC records, Iwan diberikan sebuah album penghargaan karena dia telah memenangi lomba musik humor. Album ini berisi lagu yang diambil dari album Canda Da...

 

Ancient necropolis in Egypt 1854 view through the granite upper gate of the temple of Hatshepsut at Deir el-Bahari, looking down into the plain of the Assasif, by John Beasley Greene El-Assasif (Arabic: العساسيف) is a necropolis near Luxor on the West Bank at Thebes, Egypt, Upper Egypt. It is located in the dry bay that leads up to Deir el-Bahari and south of the necropolis of Dra' Abu el-Naga'. El-Assasif contains burials from the 18th, 22nd, 25th and 26th dynasties of ancient Egypt,...

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

Japanese manga series Blue GiantFirst tankōbon volume cover, featuring Dai MiyamotoGenreDrama[1] MangaWritten byShinichi Ishizuka [ja]Published byShogakukanEnglish publisherNA: Seven Seas EntertainmentImprintBig Comics SpecialMagazineBig ComicDemographicSeinenOriginal runMay 10, 2013 – August 25, 2016Volumes10 MangaBlue Giant SupremeWritten byShinichi IshizukaPublished byShogakukanImprintBig Comics SpecialMagazineBig ComicDemographicSeinenOriginal r...

 

Taman Nasional SebangauIUCN Kategori II (Taman Nasional)Peta Kawasan Taman Nasional SebangauTN SebangauTampilkan peta Kalimantan TengahTN SebangauTampilkan peta KalimantanLetak di Kalimantan TengahLetakKalimantan Tengah, IndonesiaKota terdekatPalangka RayaKoordinat2°35′S 113°40′E / 2.583°S 113.667°E / -2.583; 113.667Koordinat: 2°35′S 113°40′E / 2.583°S 113.667°E / -2.583; 113.667Luas568.700 hektare (5687 km²)Didirikan2004Pihak p...

 

2011 song by American rapper Mac Miller For other songs of the same name, see Donald Trump (disambiguation). Not to be confused with FDT (song). Donald TrumpSingle by Mac Millerfrom the album Best Day Ever ReleasedFebruary 9, 2011Recorded2010StudioI.D. LabsGenreHip hopLength2:45LabelRostrumSongwriter(s) Malcolm McCormick Jonathan King Producer(s)SapMac Miller singles chronology On and On (2011) Donald Trump (2011) Frick Park Market (2011) Music videoDonald Trump on YouTube Donald Trump is...

Questa voce o sezione sull'argomento contee dell'Ohio non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Contea di HolmesconteaLocalizzazioneStato Stati Uniti Stato federato Ohio AmministrazioneCapoluogoMillersburg Data di istituzione1825 TerritorioCoordinatedel capoluogo40°33′36″N 81°55′48″W / 40.56°N 81.93°W40.56; -81....

 

这是马来族人名,“尤索夫”是父名,不是姓氏,提及此人时应以其自身的名“法迪拉”为主。 尊敬的拿督斯里哈芝法迪拉·尤索夫Fadillah bin Haji YusofSSAP DGSM PGBK 国会议员 副首相 第14任马来西亚副首相现任就任日期2022年12月3日与阿末扎希同时在任君主最高元首苏丹阿都拉陛下最高元首苏丹依布拉欣·依斯迈陛下首相安华·依布拉欣前任依斯迈沙比里 马来西亚能源转型与�...

 

داغنهام وريدبريدج تأسس عام 1992  البلد المملكة المتحدة  الدوري دوري الدرجة الخامسة الإنجليزي  [لغات أخرى]‏  المالك تيم هاوارد  المدرب جون ستيل (لاعب كرة قدم مواليد 1950)  الموقع الرسمي الموقع الرسمي  الطقم الرسمي الطقم الأساسي الطقم الاحتياطي تعديل مصدر�...

German economist and politician Tobias LindnerMinister of StateIncumbentAssumed office 2021Serving with Katja KeulAnna LührmannChancellorOlaf ScholzMinisterAnnalena BaerbockPreceded byNiels AnnenMember of the BundestagIncumbentAssumed office 2011 Personal detailsBorn (1982-01-11) January 11, 1982 (age 42)Karlsruhe, Baden-Württemberg, Germany)CitizenshipGermanNationality GermanyPolitical partyAlliance '90/The GreensAlma materKarlsruhe Institute of Technology Tobias ...

 

Logo resmi GONHS. Gibraltar Ornithological & Natural History Society (GONHS), didirikan tahun 1976, adalah sebuah organisasi nonpemerintah berbasis keanggotaan yang meneliti konservasi alam di Gibraltar dan kawasan Selat Gibraltar. Organisasi ini beroperasi secara independen dan bekerja sama dengan organisasi dan institusi ilmiah atau konservasi lain untuk mencapai tujuan-tujuannya. GONHS merupakan mitra BirdLife International, anggota IUCN (World Conservation Union), UK Overseas Territor...

 

Adria Airways IATA ICAO Kode panggil JP ADR ADRIA Didirikan14 Maret 1961PenghubungBandar Udara LjubljanaPenghubung sekunderBandar Udara Internasional PristinaProgram penumpang setiaMiles & MoreLounge bandaraSenator LoungeAliansiStar AllianceArmada13[1] (+1 order)Tujuan16 Winter 2011/12SloganYour home above the cloudsKantor pusatBandar Udara LjubljanaZgornji Brnik, Cerklje na Gorenjskem, SloveniaTokoh utamaKlemen Boštjančič (CEO)Situs webwww.adria.si Adria Airways CRJ 200 Adria ...

Untuk pengertian lain, lihat Adria. AdriaKomuneCittà di AdriaCanal BiancoNegaraItaliaWilayahVenetoProvinsiRovigo (RO)FrazioniBaricetta, Bellombra, Bottrighe, Ca' Emo, Campelli, Canareggio, Canton, Canton Basso, Capitello, Case Beviacqua, Case Matte, Ca'Tron, Cavanella Po, Cavedon, Chiavica Pignatta, Corcrevà, Curicchi, Fasana Polesine, Fienile Santissimo, Forcarigoli, Isolella, Mazzorno Sinistro, Montefalche, Palazzon, Passetto, Piantamelon, Sabbioni, San Pietro Basso, Tiro A Segno, Vallier...

 

Type of wiring used for communications This article is about the type of wiring. For the film, see Twisted Pair (film). Copper line redirects here. For the San Diego Trolley line, see Copper Line (San Diego Trolley). 25-pair color code chart Twisted pair cabling is a type of communications cable in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted balanced pair, a twisted pa...

 

Group of symmetries of an n-dimensional hypercube The C2 group has order 8 as shown on this circle The C3 (Oh) group has order 48 as shown by these spherical triangle reflection domains. In mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young in 1930. Groups of this type are identified by a parameter n, the dimension of the hypercube. As a Coxeter group it is of ty...

Pang YaoPang Yao en 2016InformationsNaissance 27 mai 1995 (29 ans)DalianNationalités hongkongaisechinoiseÉquipe actuelle China Liv Pro CyclingÉquipe UCI 2021-China Liv Pro Cyclingmodifier - modifier le code - modifier Wikidata Pang Yao (à gauche) avec Yang Qianyu lors de la Coupe du monde sur piste à Milton (2017). Pang Yao, née le 27 mai 1995, est une coureuse cycliste hongkongaise. Active sur route et sur piste, elle est notamment championne d'Asie de l'américaine en 2017 et cha...

 

Bloodless military coup d'état in Transkei in 1987 1987 Transkei coup d'étatMap of Transkei (red) within South Africa.Date30 December 1987; 36 years ago (1987-12-30)Location UmtataTypeMilitary coupMotiveRegime changeTargetTNIP–led government of Stella SigcauOrganised byBantu HolomisaParticipants Transkei Defence Force (faction)OutcomeCoup succeeds The overthrow of government of Prime Minister Sigcau. The establishment of military rule under the Military Council head...

 

仮面ライダーシリーズ > 仮面ライダーキバ 平成仮面ライダーシリーズ 第8作 仮面ライダー電王 2007年1月- 2008年1月 第9作 仮面ライダーキバ 2008年1月- 2009年1月 第10作 仮面ライダーディケイド 2009年1月 - 8月 仮面ライダーキバジャンル 特撮テレビドラマ原作 石ノ森章太郎(石ノ森章太郎プロ)脚本 井上敏樹 他監督 田﨑竜太 他出演者 瀬戸康史 武田航平 加藤慶祐 柳�...

Mwene Kongo Pedro IIMwene KongoPedro II of KongoReign26 May 1622 – 3 April 1624PredecessorÁlvaro IIISuccessorGarcia IDynastyHouse of Nsundi Pedro II Nkanga a Mvika was a ruler of the kingdom of Kongo during the kingdom's first conflict with the Portuguese. He was the founder of the royal House of Nsundi and could trace his descent to one of Afonso I's daughters. He was succeeded by his son Garcia I, who was crowned in 1624.[1] Career Pedro II served in the provincial government of ...

 

Russian general 55°42′53″N 37°36′6.7″E / 55.71472°N 37.601861°E / 55.71472; 37.601861 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alexander Tormasov – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this message) CountAlexander P...