Kalifujo de Abasidoj
|
Read other articles:
Symbian Software Ltd.IndustriPerangkat lunakNasibDiakuisisi oleh NokiaDidirikan1998KantorpusatSouthwark, LondonTokohkunciColly Myers, David Levin, Nigel CliffordProdukSymbian OSKaryawan1178 (2007)IndukNokiaSitus webwww.symbian.com Symbian Ltd. adalah perusahaan yang bergerak di bidang perangkat lunak. Salah satu produknya adalah Symbian OS, sebuah sistem operasi untuk perangkat telepon cerdas.[1] Memiliki kantor pusat di Southwark, London, Inggris, dengan beberapa kantor cabang ...
الشعار لتحويل مشكلة سنة 2000 1 يناير 2000 - بداية الألفية الثالثة من ميلاد يسوع الناصري. كانت سنة كبيسة قرنية تبدأ يوم السبت من التقويم الغريغوري، وسنة 2000 الأخيرة من الألفية الثانية، والسنة المئة والأخيرة للقرن العشرين، والسنة الأولى من العقد الأول من القرن الحادي والعشرين. تم ...
Halaman ini berisi artikel tentang bangunan hijau. Untuk bangunan di kampus MIT, lihat Green Building (MIT). Bagian dari seri artikel mengenaiEnergi berkelanjutan Ikhtisar Energi berkelanjutan Bahan bakar karbon netral Penghapusan bertahap bahan bakar fosil Penghematan energi Kogenerasi Efisiensi energi Penyimpanan energi Bangunan hijau Pompa panas Tenaga rendah karbon Mikrogenerasi Desain bangunan surya pasif Energi terbarukan Bahan bakar hayati Panas bumi Pembangkit listrik tenaga air Surya...
Diagram ini menunjukkan orbit satelit iregular Saturnus. Di tengah, orbit Titan, sebuah satelit yang regular, ditandai dengan warna merah sebagai perbandingan. Bestla (satelit) adalah satelit alami dari planet Saturnus. Saturnus memiliki 62 satelit, dengan 53 di antaranya telah dinamai dan hanya 13 di antaranya memiliki diameter lebih besar dari 50 kilometer. Referensi http://solarsystem.nasa.gov/planets/profile.cfm?Display=Sats&Object=Saturn Diarsipkan 2014-04-16 di Wayback Machine.
لانغهفيزن شعار الاسم الرسمي (بالألمانية: Langewiesen) الإحداثيات 50°40′18″N 10°58′28″E / 50.671666666667°N 10.974444444444°E / 50.671666666667; 10.974444444444 [1] تقسيم إداري البلد ألمانيا[2] التقسيم الأعلى إلميناو (6 يوليو 2018–) خصائص جغرافية المساحة 27.51 كيلومت�...
رابطة الجامعات الأوروبية رابطة الجامعات الأوروبية الاختصار (بالفرنسية: AUE (français))، و(بالإنجليزية: EUA (english)) البلد بلجيكا المقر الرئيسي بروكسل، بلجيكا تاريخ التأسيس 2001 العضوية منطقة التعليم العالي الأوروبية، والاتحاد الدولي للجامعات[1] الرئيس ر...
Gunichi MikawaLahirAugust 29, 1888Prefektur Hiroshima, JepangMeninggal25 Februari 1981(1981-02-25) (umur 92)PengabdianKekaisaran JepangDinas/cabang Angkatan Laut Kekaisaran JepangLama dinas1910–1945PangkatLaksamana MadyaKomandanAoba, Kirishima 3rd NGS Division Mobilization, 3rd Battleship Division, 8th Fleet, 2nd Southern Expeditionary Fleet, 13th Air Fleet, South Western Area Fleet, 3rd Southern Expeditionary Fleet [1]Perang/pertempuranPerang Dunia II Serangan Pearl ...
Dewan Perwakilan Rakyat Daerah Kabupaten Sukabumi ᮓᮦᮝᮔ᮪ ᮕᮀᮝᮊᮤᮜ᮪ ᮛᮠᮚᮒ᮪ ᮓᮆᮛᮂ ᮊᮘᮥᮕᮒᮦᮔ᮪ ᮞᮥᮊᮘᮥᮙᮤDéwan Pangwakil Rahayat Daérah Kabupatén SukabumiDewan Perwakilan RakyatKabupaten Sukabumi2019-2024JenisJenisUnikameral SejarahSesi baru dimulai5 Agustus 2019PimpinanKetuaYudha Sukmagara, B.B.A., S.H. (Gerindra) sejak 24 September 2019 Wakil Ketua IBudi Azhar Mutawali, S.IP. (Golkar) sejak 24 September 2019 Wakil Ketua II...
عالم رياضيات تسمية الإناث رياضياتية فرع من عالم المجال رياضيات تعديل مصدري - تعديل الرياضي[1] أو الرياضياتي[2] أو الحاسب أو عالم الحساب أو الحسّاب أو الحيسوبي [3] من تختص دراساته وأبحاثه بالرياضيات. دوافع يهتم علماء الرياضيات بإيجاد صيغ رياضية، ...
Species of tree Jamun redirects here. For the dessert popular in Indian cuisine, see gulab jamun. Syzygium cumini Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Myrtales Family: Myrtaceae Genus: Syzygium Species: S. cumini Binomial name Syzygium cumini(L.) Skeels.[2] Synonyms[2] List Calyptranthes caryophyllifolia Willd. Calyptranthes cumi...
Government agency of Pennsylvania, United States Pennsylvania Department of TransportationCommonwealth Keystone Building, which has the headquarters of the agency[1]Agency overviewFormedJuly 1, 1970(54 years ago) (1970-07-01)Preceding agenciesDepartment of HighwaysBureau of Motor Vehicles and Traffic SafetyMass Transit DivisionAeronautics CommissionDepartment of Revenue (oversaw licensing, registration and inspection of motor vehicles)JurisdictionCommonwealth of Pennsylvania...
Questa voce sugli argomenti allenatori di calcio giapponesi e calciatori giapponesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Masanaga KageyamaNazionalità Giappone Altezza181 cm Peso78 kg Calcio RuoloAllenatore (ex difensore) Squadra Giappone U-20 Termine carriera1996 - calciatore CarrieraGiovanili 1986-1989Università di Tsukuba Squadre di club1 1990-1994 JEF United[1]84 (4)19...
Meet BillTheatrical release posterSutradaraBernie GoldmannMelisa WallackProduserFisher StevensJohn PenottiDitulis olehMelisa WallackPemeranAaron EckhartJessica AlbaElizabeth BanksTimothy OlyphantLogan LermanDistributorFirst Look InternationalTanggal rilis 08 September 2007 (2007-09-08) (Toronto International Film Festival) 04 April 2008 (2008-04-04) (United States) Durasi97 minutesNegaraUnited StatesBahasaEnglishAnggaran$5,000,000[1]Pendapatankotor$346,592[2]...
Monmouth War MemorialWalesFor Monmouth dead of all warsUnveiled6 October 1921Location51°48′45″N 2°42′36″W / 51.8126°N 2.7099°W / 51.8126; -2.7099near MonmouthDesigned byReginald Harding Monmouth School MemorialWalesFor Monmouth School War DeadUnveiled1921Location51°48′40″N 2°42′37″W / 51.8111°N 2.7104°W / 51.8111; -2.7104near Monmouth Royal Monmouthshire Royal Engineers War MemorialWalesFor The Great WarLo...
Events from the 5th century in Lebanon 5th century in Lebanon Key event(s): Christianization of Lebanon Icon of Maron, whose followers, after his death, founded a religious Christian movement that became known as the Maronite Church, Chronology: ← 4th century 5th century 6th century → Part of a series on the History of Lebanon Timeline Ancient Prehistory Canaan/Phoenicia (2500–333 BC) Egyptian rule (1550–1077 BC) Hittite rule (1600–1178 BC) Assyrian rule (883–605 BC) Babylonian ru...
SkorpiosΣκορπιόςL'isola di SkorpiosGeografia fisicaLocalizzazioneMar Ionio Coordinate38°41′30″N 20°44′45″E38°41′30″N, 20°44′45″E ArcipelagoIsole Ionie Superficie0,8 km² Dimensioni1,72 × 1,24 km Geografia politicaStato Grecia PeriferiaIsole Ionie Unità perifericaLeucade ComuneMeganisi DemografiaAbitanti2 (2001) Cartografia Skorpios voci di isole della Grecia presenti su Wikipedia Skorpios (in greco Σκορπιός?) è un'isola privata nel Mar Ion...
Pour les articles homonymes, voir Aubertin. Pierre AubertinBiographieNaissance 22 mars 1915Vitry-le-FrançoisDécès 7 mars 1949 (à 33 ans)LyonSépulture Cimetière de LoyasseNationalité françaiseActivité OfficierAutres informationsConflit Seconde Guerre mondialeDistinctions Liste détailléeOfficier de la Légion d'honneurMédaille de la RésistanceDistinguished Flying CrossCroix de guerre 1939-1945Compagnon de la LibérationCitation militaire britanniquemodifier - modifier le c...
Village in Pomeranian Voivodeship, PolandOsłoninoVillageOsłoninoCoordinates: 54°40′8″N 18°27′24″E / 54.66889°N 18.45667°E / 54.66889; 18.45667Country PolandVoivodeshipPomeranianCountyPuckGminaPuckPopulation350Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Vehicle registrationGPU Osłonino [ɔswɔˈninɔ] is a village in the administrative district of Gmina Puck, within Puck County, Pomeranian Voivodeship, in northern Poland.[1] It...
Philipp DegenNazionalità Svizzera Altezza186 cm Peso83 kg Calcio RuoloDifensore Termine carriera2016 CarrieraGiovanili 1987-1995 Oberdorf1995-2001 Basilea Squadre di club1 2001-2005 Basilea19 (0)2002-2003→ Aarau16 (0)2001-2005 Basilea63 (4)2005-2008 Borussia Dortmund68 (1)2008-2010 Liverpool7 (0)2010-2011→ Stoccarda5 (0)2011 Liverpool0 (0)2011-2016 Basilea76 (7) Nazionale 2003-2004 Svizzera U-2114 (0)2005-2009 Svizzera32 (0) 1 I du...
Matrix in math with special properties In mathematics, a conference matrix (also called a C-matrix) is a square matrix C with 0 on the diagonal and +1 and −1 off the diagonal, such that CTC is a multiple of the identity matrix I. Thus, if the matrix has order n, CTC = (n−1)I. Some authors use a more general definition, which requires there to be a single 0 in each row and column but not necessarily on the diagonal.[1][2] Conference matrices first arose in connect...