ZFK equation

ZFK equation, abbreviation for Zeldovich–Frank-Kamenetskii equation, is a reaction–diffusion equation that models premixed flame propagation. The equation is named after Yakov Zeldovich and David A. Frank-Kamenetskii who derived the equation in 1938 and is also known as the Nagumo equation.[1][2] The equation is analogous to KPP equation except that is contains an exponential behaviour for the reaction term and it differs fundamentally from KPP equation with regards to the propagation velocity of the traveling wave. In non-dimensional form, the equation reads

with a typical form for given by

where is the non-dimensional dependent variable (typically temperature) and is the Zeldovich number. In the ZFK regime, . The equation reduces to Fisher's equation for and thus corresponds to KPP regime. The minimum propagation velocity (which is usually the long time asymptotic speed) of a traveling wave in the ZFK regime is given by

whereas in the KPP regime, it is given by

Traveling wave solution

Numerical solution of ZFK equation

Similar to Fisher's equation, a traveling wave solution can be found for this problem. Suppose the wave to be traveling from right to left with a constant velocity , then in the coordinate attached to the wave, i.e., , the problem becomes steady. The ZFK equation reduces to

satisfying the boundary conditions and . The boundary conditions are satisfied sufficiently smoothly so that the derivative also vanishes as . Since the equation is translationally invariant in the direction, an additional condition, say for example , can be used to fix the location of the wave. The speed of the wave is obtained as part of the solution, thus constituting a nonlinear eigenvalue problem.[3] Numerical solution of the above equation, , the eigenvalue and the corresponding reaction term are shown in the figure, calculated for .

Asymptotic solution[4]

The ZFK regime as is formally analyzed using activation energy asymptotics. Since is large, the term will make the reaction term practically zero, however that term will be non-negligible if . The reaction term will also vanish when and . Therefore, it is clear that is negligible everywhere except in a thin layer close to the right boundary . Thus the problem is split into three regions, an inner diffusive-reactive region flanked on either side by two outer convective-diffusive regions.

Outer region

The problem for outer region is given by

The solution satisfying the condition is . This solution is also made to satisfy (an arbitrary choice) to fix the wave location somewhere in the domain because the problem is translationally invariant in the direction. As , the outer solution behaves like which in turn implies

The solution satisfying the condition is . As , the outer solution behaves like and thus .

We can see that although is continuous at , has a jump at . The transition between the derivatives is described by the inner region.

Inner region

In the inner region where , reaction term is no longer negligible. To investigate the inner layer structure, one introduces a stretched coordinate encompassing the point because that is where is approaching unity according to the outer solution and a stretched dependent variable according to Substituting these variables into the governing equation and collecting only the leading order terms, we obtain

The boundary condition as comes from the local behaviour of the outer solution obtained earlier, which when we write in terms of the inner zone coordinate becomes and . Similarly, as . we find . The first integral of the above equation after imposing these boundary conditions becomes

which implies . It is clear from the first integral, the wave speed square is proportional to integrated (with respect to ) value of (of course, in the large limit, only the inner zone contributes to this integral). The first integral after substituting is given by

KPP–ZFK transition

Black line: Numreically computed ; Red line: ; Blue line: .

In the KPP regime, For the reaction term used here, the KPP speed that is applicable for is given by[5]

whereas in the ZFK regime, as we have seen above . Numerical integration of the equation for various values of showed that there exists a critical value such that only for , For , is greater than . As , approaches thereby approaching the ZFK regime. The region between the KPP regime and the ZFK regime is called the KPP–ZFK transition zone.

The critical value depends on the reaction model, for example we obtain

Clavin–Liñán model

To predict the KPP–ZFK transition analytically, Paul Clavin and Amable Liñán proposed a simple piecewise linear model[6]

where and are constants. The KPP velocity of the model is , whereas the ZFK velocity is obtained as in the double limit and that mimics a sharp increase in the reaction near .

For this model there exists a critical value such that

See also

References

  1. ^ Zeldovich, Y. B., & Frank-Kamenetskii, D. A. (1938). The theory of thermal propagation of flames. Zh. Fiz. Khim, 12, 100-105.
  2. ^ Biktashev, V.N.; Idris, I. (2008). "Initiation of excitation waves: An analytical approach". 2008 Computers in Cardiology. pp. 311–314. doi:10.1109/CIC.2008.4749040. ISBN 978-1-4244-3706-1. S2CID 15607806.
  3. ^ Evans, L. C. (2010). Partial differential equations (Vol. 19). American Mathematical Soc.
  4. ^ Williams, F. A. (2018). Combustion theory. CRC Press.
  5. ^ Clavin, P., & Searby, G. (2016). Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars. Cambridge University Press.
  6. ^ Clavin, P., & Liñán, A. (1984). Theory of gaseous combustion. In Nonequilibrium Cooperative Phenomena in Physics and Related Fields (pp. 291-338). Springer, Boston, MA.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Chen YangChen Yang memegang medali emas pada 2017Informasi pribadiKewarganegaraanTiongkokLahir10 Juli 1991 (umur 32)Tinggi180 m (590 ft 6+1⁄2 in)[1]Berat97 kg (214 pon)[1] OlahragaOlahragaTrek dan la...

 

Standar TV melalui 1080p. Gambar berwarna merah menunjukkan resolusi 576i atau 576p. Gambar berwarna biru menunjukkan resolusi 720p, tingkat resolusi HDTV. Gambar penuh warna menunjukkan resolusi 1080p. Logo Full HD 1080p 1080p (1920 × 1080 px; juga dikenal sebagai Full HD atau FHD dan BT.709) adalah satu set mode video HDTV definisi tinggi yang ditandai dengan 1080 garis horizontal resolusi vertikal.[1] Kepanjangan dari p adalah pemindaian progresif, yaitu non-interlaced. Istilah in...

 

العلاقات البنمية التشيلية بنما تشيلي   بنما   تشيلي تعديل مصدري - تعديل   العلاقات البنمية التشيلية هي العلاقات الثنائية التي تجمع بين بنما وتشيلي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بنما تشيلي المس�...

Global network of research-intensive universities Universitas 21Formation1997TypeEducation and researchHeadquartersBirmingham, United KingdomRegion served GlobalProvostJenny DixonWebsiteU21 Universitas21 Universitas 21 (U21) is an international network of research-intensive universities.[1][2][3] Founded in Melbourne, Australia in 1997 with 11 members, it has grown to include twenty-nine member universities in nineteen countries and territories.[4][5] T...

 

Chronologies File d'attente devant une boulangerie-pâtisserie à Paris au printemps 1945.Chronologie de la Seconde Guerre mondiale Jan - Fév - Mar - Avr - Mai - Juin Juil - Aoû - Sep - Oct - Nov - Déc Chronologie dans le monde 1942 1943 1944  1945  1946 1947 1948Décennies :1910 1920 1930  1940  1950 1960 1970Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Al...

 

Cet article est une ébauche concernant le catch. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (septembre 2008). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualit...

Halaman ini berisi artikel tentang musikal. Untuk rekaman pemeran Broadway, lihat Hamilton (album). HamiltonAn American MusicalPlaybill dari Original Broadway ProductionMusikLin-Manuel MirandaLirikLin-Manuel MirandaNaskahLin-Manuel MirandaDiangkat dariAlexander Hamiltonkarya Ron ChernowDebut20 Januari 2015 – The Public Theater, New York CityProduksi2015 Off-Broadway2015 BroadwayPenghargaanDaftar penghargaan Drama Desk Award for Outstanding Musical Drama Desk Award for Outstanding Music...

 

1991 video game 1991 video gameThe Legend of Zelda: A Link to the PastNorth American box artDeveloper(s)Nintendo EADPublisher(s)NintendoDirector(s)Takashi TezukaProducer(s)Shigeru MiyamotoProgrammer(s) Yasunari Soejima Toshihiko Nakago Artist(s) Masanao Arimoto Tsuyoshi Watanabe Writer(s) Kensuke Tanabe Composer(s)Koji KondoSeriesThe Legend of ZeldaPlatform(s)Super NESReleaseJP: November 21, 1991NA: April 13, 1992EU: September 24, 1992Genre(s)Action-adventureMode(s)Single-player The Legend of...

 

Portugalau Concours Eurovision 2022 Données clés Pays  Portugal Chanson Saudade, saudade Interprète MARO Langue Portugais, anglais Sélection nationale Radiodiffuseur RTP Type de sélection Festival da Canção 2022 Date 12 mars 2022 Concours Eurovision de la chanson 2022 Position en demi-finale 4e (208 points, qualifiée) Position en finale 9e (207 points) 2021 2023 modifier Le Portugal est l'un des quarante pays participants du Concours Eurovision de la chanson 2022, qui ...

International song competition Eurovision Song Contest 1983DatesFinal23 April 1983HostVenueRudi-Sedlmayer-HalleMunich, West GermanyPresenter(s)Marlene CharellMusical directorDieter ReithDirected byRainer BertramExecutive supervisorFrank NaefExecutive producerChristian HayerGünther LebramHost broadcasterArbeitsgemeinschaft der öffentlich-rechtlichen Rundfunkanstalten der Bundesrepublik Deutschland (ARD)Bayerischer Rundfunk (BR)Websiteeurovision.tv/event/munich-1983 ParticipantsNumber of entr...

 

Alphabetical list of named rocks and meteorites found on Mars Martian rocks redirects here. For Martian meteorites found on Earth, see List of Martian meteorites. This is an alphabetical list of named rocks (and meteorites) found on Mars, by mission. This list is a sampling of rocks viewed, and is not an exhaustive listing. A more complete listing may be found on the various NASA mission web sites. This listing does not include Martian meteorites found on Earth. Names for Mars rocks are large...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Miamisburg, Ohio – news · newspapers · books · scholar · JSTOR (June 2016) (Learn how and when to remove this message) City in Ohio, United StatesMiamisburg, OhioCityMain Street in MiamisburgNickname(s): Hole's Station, The BurgMotto: Ohio's Star Cit...

Japanese racing driver Shigeaki HattoriNationalityJapaneseBorn (1963-11-03) November 3, 1963 (age 60)Okayama, OkayamaRetired2005Indy Racing League IndyCar SeriesYears active2000–2003TeamsTreadway-Vertex Cunningham RacingBradley MotorsportsA. J. Foyt EnterprisesStarts26Wins0Poles0Best finish13th in 2001Previous series19991996–19981993–1994CART World SeriesIndy LightsAll-Japan Formula Three ChampionshipNASCAR driver NASCAR Craftsman Truck Series career10 races run over 1 yearBest fin...

 

He Was CoolPoster film He Was CoolNama lainHangul그 놈은 멋있었다 Alih Aksara yang DisempurnakanGeu nomeun meoshisseotdaMcCune–ReischauerKŭ nomŭn mŏtissiŏtta SutradaraLee Hwan-gyeongProduserGwak Jeong-HwanSkenarioLee Hwan-GyeongBerdasarkanNovelGuiyeoniPemeranSong Seung HunJung Da BinPenata musikAhn Jeong-HunSinematograferLee Gang-MinPenyuntingKim Seon-MinDistributorHapdong FilmsTanggal rilis 22 Juli 2004 (2004-07-22) Durasi113 menitBahasaKorea He Was Cool (그 �...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

Finnish technology company making measuring instruments For other uses, see Vaisala (disambiguation). Second Wind (company) redirects here. For the gaming journalism outlet, see Second Wind (entertainment group). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and in...

 

Mathematical model of a thin, flat object This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Planar lamina – news · newspapers · books · scholar · JSTOR (Octo...

 

American businessman Samuel J. PalmisanoPalmisano in March 2013Born (1951-07-29) July 29, 1951 (age 72) [1]Baltimore, Maryland, U.S.EducationBachelor of Arts (1973)Alma materJohns Hopkins UniversityYears active1973–presentEmployerIBM (1973–2012)TitleChairmanPredecessorLouis V. Gerstner, Jr.SuccessorVirginia M. RomettyBoard member ofIBM Corporation, 2000ExxonMobil Corp., 2006Spouse(s)Gaier Notman, known as MissyChildrenthree sons, one daughterWebsiteIBM - Samuel...

Mitos Kecantikan Sampul edisi IndonesiaPengarangNaomi WolfBahasaInggrisPenerbitChatto & WindusTanggal terbit1990Jenis mediaPrintISBNISBN 978-0-385-42397-7Diikuti olehFire with Fire: The New Female Power and How To Use It  Mitos Kecantikan: Kala Kecantikan Menindas Perempuan adalah sebuah buku nonfiksi karya Naomi Wolf, diterbitkan pada tahun 1990 oleh Chatto & Windus di Inggris dan William Morrow & Co (1991) di Amerika Serikat. Lalu diterbitkan ulang pada tahun...

 

  لمعانٍ أخرى، طالع سيبيريا (توضيح). سيبيريا   تعديل مصدري - تعديل   سيبيريا هي إحدى قارات العالم القديم واليوم أصبحت الجزء الشرقي والشمال الشرقي من روسيا، حيث كانت قارة مستقلة قبل العصر البرمي. يمتد غرباً من جبال الأورال حتى المحيط الهادي شرقاً، ومن المحيط المتجمد...