Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3.[3] The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.[4]
Synthesis
Precipitation of soluble yttrium salts with oxalic acid:[5]
Properties
Yttrium oxalate is highly insoluble in water and converts to the oxide when heated.[6] Yttrium oxalate forms crystalline hydrates (colorless crystals) with the formula Y2(C2O4)3•n H2O, where n = 4, 9, and 10.
Decomposes when heated:
The solubility product of yttrium oxalate at 25 °C is 5.1 × 10−30.[1]
The trihydrate Y2(C2O4)3•3H2O is formed by heating more hydrated varieties at 110 °C.[7]
Y2(C2O4)3•2H2O, which is formed by heating the decahydrate at 210 °C) forms monoclinic crystals with unit cell dimensions a=9.3811 Å, b=11.638 Å, c=5.9726 Å, β=96.079°.[8]
Related
Several yttrium oxalate double salts are known containing additional cations. Also a mixed-anion compound with carbonate is known.
^Moosath, S. S.; Abraham, John; Swaminathan, T. V. (August 1963). "Thermal Decomposition of Rare Earth Metal Oxalates. III. Oxalates of Holmium, Erbium, Thulium, Ytterbium, Lutetium and Yttrium". Zeitschrift für anorganische und allgemeine Chemie. 324 (1–2): 99–102. doi:10.1002/zaac.19633240112.
^Bataille, T.; Auffrédic, J.-P.; Louër, D. (January 2000). "A Powder Diffraction Study of the Crystal Structure and the Dehydration Process of Yttrium Potassium Oxalate Tetrahydrate". Materials Science Forum. 321–324: 976–981. doi:10.4028/www.scientific.net/MSF.321-324.976. S2CID98146305.
^Genčova, O.; šiftar, J. (April 1997). "Synthesis and dehydration of double oxalates of rare earths(III) with some monovalent metals: II. Investigations of RbLn(C2O4)2·nH2O". Journal of Thermal Analysis. 48 (4): 877–884. doi:10.1007/bf01997192. S2CID95932914.
^Bataille, Thierry; Louër, Daniel (2000-12-01). "Powder and single-crystal X-ray diffraction study of the structure of [Y(H 2 O)] 2 (C 2 O 4 )(CO 3 ) 2". Acta Crystallographica Section B: Structural Science. 56 (6): 998–1002. doi:10.1107/S0108768100010004. PMID11099966.